多自由度ランダム振動制御システム

K2

Multi-RANDOM

取扱説明書

IMV 株式会社

- 文 書 名 取扱説明書
- 適合システム K2

ソフトウエア <Multi-RANDOM> Version 14.3.0以降

版	歴
10.	/

版番号	年月日	内容
1.0.0	2008.01.18	初版
1. 1. 0	2008. 12. 17	CSV データファイル形式の記述追加
6.0.0	2010. 10. 21	Windows7 対応
6.1.0	2011. 09. 26	「最小値制御」の記述追記
10.0.0	2013.08.09	画面の刷新、テストファイルの記述変更、入力チャネルの記述変更
10.0.1	2013. 10. 29	誤植の訂正
13. 5. 0	2017.06.27	ホワイトノイズによる伝達関数測定の記述追加、誤植の訂正
13.6.0	2017. 10. 11	制御運転データ関連の操作に関する記述の追加
14. 1. 0	2018.04.27	実測波形定義の記述追加
14. 3. 0	2019. 04. 19	データ保存条件の記述変更、誤植の訂正

目次

第1章 システム概説	 1-1
1.1 仕様	 1-1
1.1.1 Multi-RANDOM	 1-1
1.1.2 PSD リミット(Multi-RANDOM のオプション)	 1-2
第2章 K2アプリケーションの操作体系	 2-1
2.1 概要	 2-1
2.2 テストファイル	 2-2
第3章 基本操作例	 3-1
3.1 ブレイクポイント PSD 試験	 3-1
3.2 実測 PSD 試験	 3-32
第4章 テストの定義	 4-1
4.1 概要	 4-1
4.2 基本·制御条件	 4-2
4.2.1 周波数レンジ	 4-2
4.2.2 制御ライン数	 4-2
4.2.3 最高観測周波数	 4-3
4.2.4 制御単位	 4-3
4.2.5 平均化パラメータ	 4-3
4.2.6 イコライゼーションモード	 4-4
4.2.7 ループチェック	 4-5
4.2.8 試験時間	 4-5
4.2.9 初期出力レベル	 4-6
4.2.10 レベル増減値	 4-6
4.2.11 自動開始	 4-7
4.2.12 出力停止遷移時間	 4-7
4.2.13 レベルスケジューリング	 4-7
4.2.13.1 レベル	 4-8
4.2.13.2 時間	 4-8
4.2.13.3 トレランス拡大	 4-9
4.3 多点·多軸制御条件	 4-10
4.3.1 伝達関数測定加振回数指定	 4-10
4.3.2 クロストーク制御	 4-12
4.3.3 制御方針	 4-12
4.3.4 ドライブ節約	 4-13
4.3.5 制御速度	 4-15
4.3.6 クロストーク制御情報更新の抑制	 4-15
4.3.7 クロストーク情報平均回数	 4-16
4.3.8 全加振グループをリミット対象とする	 4-17

4.4	加振システム設定	4-18
	4.4.1 概要	4-18
	4.4.2 加振グループ配置	4-19
	4.4.3 各加振グループ毎の定義項目	4-20
	4.4.3.1 初期出力電圧	4-20
	4.4.3.2 伝達関数測定電圧	4-20
	4.4.3.3 クリッピング	4-21
	4.4.3.3.1 クレストファクタによるクリッピング	4-21
	4.4.3.3.2 許容電圧	4-21
	4.4.3.3.3 許容クリッピング比率	4-21
	4.4.3.4 HPF(ハイパスフィルタ)	4-22
4.5	目標 PSD	4-23
	4.5.1 目標 PSD 配置	4-23
	4.5.2 PSD 定義	4-25
	4.5.2.1 ブレイクポイント PSD 定義	4-26
	4.5.2.1.1 概要	4-26
	4.5.2.1.2 周波数	4-27
	4.5.2.1.3 レベル	4-27
	4.5.2.1.4 傾き	4-27
	4.5.2.1.5 rms 値変更	4-28
	4.5.2.2 実測 PSD 定義	4-29
	4.5.2.2.1 概要	4-29
	4.5.2.2.2 PSD データファイルの読み込み	4-30
	4.5.2.2.3 データ加工	4-31
	4.5.2.2.3.1 LPF(ローパスフィルタ)設定	4-31
	4.5.2.2.3.2 HPF(ハイパスフィルタ)設定	4-32
	4.5.2.2.3.3 レベル変更	4-33
	4.5.2.2.3.4 rms 値変更	4-34
	4.5.2.2.4 CSV データファイル	4-34
	4.5.2.3 実測波形定義	4-35
	4.5.2.3.1 概要	4-35
	4.5.2.3.2 波形データの読み込み	4-36
	4.5.2.3.3 波形データ編集	4-39
	4.5.2.3.3.1 フィルタ処理	4-39
	4.5.2.3.3.2 始端、終端処理	4-41
	4.5.2.3.3.3 数値間演算	4-44
	4.5.2.3.3.4 データポイント数変更	4-46
	4.5.2.3.4 CSV データファイル	4-49
	4.5.3 トレランス定義	4-50
	4.5.3.1 トレランス	4 - 51

4.5.3.2 警告ラインを定義する	4-51
4.5.3.3 下限ラインを使用する	4-51
4.5.4 応答 rms 監視	4-52
4.6 入力チャネル	4-53
4.6.1 概要	4-53
4.6.2 入力チャネル配置	4-55
4.6.3 入力チャネル毎の定義項目	4-56
4.6.3.1 ドライブ生成の重み	4-57
4.6.3.2 平均化重みづけ係数	4-58
4.6.3.3 最大値制御	4-59
4.6.3.4 チャネル固有の平均化パラメータを指定	4-60
4.6.3.5 モニタ rms を監視する	4-61
4.6.3.5.1 中断チェック/警告チェック	4-61
4.6.3.6 監視プロファイルを使用する	4-63
4.6.3.6.1 プロファイル定義	4-63
4.6.3.6.2 トレランス定義	4-63
4.6.3.6.3 監視プロファイルによるリミット	4-64
4.7 データ保存条件	4-65
4.7.1 概要	4-65
4.7.2 データの保存条件	4-65
4.8 実行ステータス	4-67
第5章 メッセージとその意味	5-1
5.1 K2Multi-Random エラーメッセージ	5-1
第6章 補足説明	6-1
6.1 動作設定	6-1
6.2 手動操作	6-2
6.3 制御運転データの取り込みと削除	6-4
6.3.1 制御運転データの取り込み	6-5
6.3.1.1 試験終了時に取り込む方法	6-5
6.3.1.2 定義モードで取り込む方法	6-7
6.3.2 制御運転データの削除	6-10
6.4 伝達関数測定のスキップ(テストに取り込まれた伝達関数を使用する)	6-11
6.5 伝達関数の継続測定	6-14
6.6 中断したテストを再開する	6-18
6.7 即時加振	6-21

第1章 システム概説

1.1 仕様

1.1.1 Multi-RANDOM

(1) 制御方式: ①フィードフォワード方式による、ガウス性不規則波形信号の PSD 制御
 ②フィードフォワード方式によるリアルタイム波形制御
 ③各軸間においてクロストーク制御を実施

- (2) 制御周波数 fmax: 最大 10 kHz(ただし、使用条件による制限があり得ます)
- (3) 制御ライン数L: 最大3200 lines (ただし、使用条件による制限があり得ます)
- (4) 制御ダイナミックレンジ: 90 dB 以上
- (5) ループタイム: 約 450 ms (3 入力 3 出力, 120 DOF, fmax=2000 Hz, L= 200 line, クロス トーク情報平均=8 回/loop 時)
- (6) 入力チャネル (使用条件による制限があり得ます)
 - 1) チャネル数: 最大 64 (うち、主制御チャネルは最大 32)
 - 2) チャネル種別: 主制御チャネル/制御チャネル/モニタチャネル(重複可)
 - 3) 制御応答平均化方式 平均值制御/最大值制御/最小值制御
 - 4) 警報/中断機能: 各入力チャネル毎に、警報/中断のための当該チャネルでの最大許容
 スペクトルデータ (PSD) または rms 値を指定可能。
 - 5) リミット制御機能:各入力チャネル毎に、当該チャネルでの最大許容スペクトルデータ

(PSD) かつ(または)rms 値を指定可能。

当該チャネルにおいて、指定スペクトルを超える応答が発生すること が予測される場合、システムが当該スペクトル逸脱事象が発生しない ように制御を行い、運転を停止することなく試験を続行する機能です (ただし、上記予測には、被制御系の線形性が仮定されます)。 なお、PSDデータによって上述のことを行うには、オプション「PSD

- リミット」が必要です。
- (7) 出力チャネル (使用条件による制限があり得ます)
 - 1) チャネル数: 最大16
 - 2) クリッピング: 電圧値。σ指定も追加可能。
- (8) 分析・表示データ:
 - 1) 目標、制御応答 PSD とトレランス
 - 2) 各入力チャネル毎の PSD、波形データ
 - 3) ドライブスペクトル
 - 4) 伝達率: ・被制御系伝達率(制御応答/ドライブ)
 - ・入力チャネル/ドライブ間伝達率
 - ・入力チャネル間伝達率(振幅、位相)
 - 5) モニタ監視 PSD、リミット制御実施比率
 - 6) 主制御チャネル・ドライブ出力チャネル間の伝達関数、コヒーレンス等のデータ
 - 7) 加振ステータス

(9) データの保存: 自動保存/手動保存

画面データのCSV形式への保存

- (10) 制御運転情報の保存と利用
 - 1) 試験実施時間情報の保存とその継続実施(試験の分割実施)
 - 2) 制御情報の保存とその継続実施(即時立ち上げ運転)
- (11) 付属ソフトの補足

K2/Multi-RANDOM には、2 入力の K2/ RANDOM (単軸用ランダム振動制御システム)が標 準付属します。K2/Multi-RANDOM の追加オプションは、標準付属の K2/ RANDOM にも反映 されます。

(12) オプション PSD リミット

1.1.2 PSD リミット(Multi-RANDOM のオプション)

- (1) 指定方法 各リミットコントロールチャネル各々に対して、監視レベルを PSD により与え ます。
- (2) チャネル数 システムで使用可能な全ての入力チャネルが使用可能です。(ただし、ライセンス設定がされていること)
- (3) 対象物理量 制御量と異なる物理量単位であってもリミットコントロールチャネルとして使 用することも可能です。

第2章 K2 アプリケーションの操作体系

2.1 概要

K2 アプリケーションでは、起動後の操作は、キーボード、マウスを用いて行います。本アプリケーションを起動すると、下図のようなウィンドウが開きます。

メニューバーには、本アプリケーションのすべてのメニュー名が表示されています。各メニュー名を クリックするとメニューが開き、使用できるコマンドの一覧を表示します。

各ツールバーには、メニューの中のよく使うコマンドをアイコンで表示しています。アイコンをクリ ックすると対応するコマンドが実行するか、コマンドに対応したダイアログボックスが開きます。

ステータススバーには、K2 コントローラの動作状況を表示します。

実行ステータスパネルには、加振試験中の状況を表示します。

K2アプリケーションのウィンドウ

2.2 テストファイル

K2 アプリケーションでは、テスト実施に必要な情報を、「テストファイル」と呼ばれる所定のファ イルに格納します。

テストファイルの中には、次のような種類があります。

必ず使用するテストファイル

 ・テスト定義ファイル : Ver10.0.0 以降に作成されたファイル K2Multi-RANDOM (*.mran2) Ver10.0.0 以前に作成されたファイル K2Multi-RANDOM (*.mran)
 ・グラフデータファイル : Ver10.0.0 以降に作成されたファイル (*.vdf2)

Ver10.0.0.0 以前に作成されたファイル(*.vdf)

- ・環境設定ファイル
 - (I/O モジュール構成情報,加振システム情報,入力チャネル情報): SystemInfo.Dat2
 - 注 1)システムドライブの¥IMV¥ K2_2nd に保存されます。削除禁止

Ver10.0.0 以前の K2 ではシステムドライブの¥IMV¥K2 フォルダに保存されます。 Ver6.0.0 以前の K2 では Windows フォルダに保存されます。

注 2) Ver10.0.0 以前の K2 から Ver10.0.0 以降の K2 にバージョンアップする場合、インスト ール時に環境設定ファイルは Ver10.0.0 以降用のフォーマットに自動的に変換されます。

第3章 基本操作例

3.1 ブレイクポイント PSD 試験

<例題>

下記のようなブレイクポイント PSD 試験を行うことを考えます。

[目標パターン]

10[Hz]から1000[Hz]までの上図のような形をした10[(m/s²)rms]のPSDとします。

[試験時間]

1分

[使用するセンサ等の情報]

以下の圧電型の加速度ピックアップを2つ使用します。

ch1.: 主制御用、感度 3pC/(m/s²)、ブレイクポイント PSD 制御

ch2.: 主制御用、感度 3pC/(m/s²)、ゼロ目標制御

ただし、これらの情報(チャネル名、感度)はすでに入力チャネル情報(この例では「SysInp01」)に 登録されているものとします。

加振システムの定格等の情報もすでに加振システム情報(この例では「System1」)に登録されているものとします。

<操作手順>

<Step1>

[新規作成] ボタンを押します。

<Step2>

「加振システム構成(複数グループ)」を選択します。

<Step3>

「加振システム情報」を選択します。

加振システム構成設定	? 💌)
加振システム構成		
◎ 単一グループ		
◎ 複数グループ		
加振システム情報		
System1		
☑ 入力環境情報選択		
SysInp01		
ОК	 	

<Step4>

「入力チャネル情報」を選択します。

	加振システム構成設定	? 💌	
	加振システム構成		
	◎ 単一グループ		
	◎ 複数グループ		
	加振システム情報		
	System		
<u> </u>	▶ ☑ 入力環境情報選択		
•	SysInp01		
			^**
			`
	ОК	キャンセル	

<Step5>

[OK] ボタンを押します。

加振システム構成設定	-? <mark>-</mark> *	
─加振システム構成────		
◎ 単一グループ		
◎ 複数グループ		
- 加振システム情報		
System1		
📝 入力環境情報選択		
SysInp01		
		\neq ()
ОК	- キャンセル	

<Step6>

[次の定義] ボタンを押します。

<Step7> 周波数レンジを「1000Hz」に設定します。

基本・制御条件 周波数レンジ 1000.00 → Hz 本f Hz フレームタイム ms 制御単位 加速度 m/s ² →	? × OK キャンセル 参照 登録
平均化パラメータ M 4 ← E 8 ← 120 DOF イコライゼーションモード 標準 → 詳細設定(C) ループチェック 標準 → 試験時間 時間指定 → ← レベルスケジューリング 未定義 定義(L) 初期出力レベル -10.00 ← dB レベル増減値 2.00 ← dB	
出力停止遷移時間 500.0 🚔 ms	

<Step8>

制御ライン数を「400」に設定します。

, Č
基本・制御条件
周波数レンジ 1000.00 ▼ Hz 制御ライン数 400 ▼ 最高観測周波数 1000.00 ● Hz OK
▲1 2.30 Hz 90-4394 A 400.0 ms 制御単位 加速度 ▼ m/s² ●
平均化バラメータ M 4 E 8 F 120 DOF イコライゼーションモード 標準 → 詳細設定(C)
ループチェック 標準 マ 試験時間 時間指定 マ レベルスケジューリング 未定義 定義(」)… 削除(D)
初期出力レベル -10.00 🚔 dB レベル増減値 2.00 🚔 dB
□ 自動開始 出力停止遷移時間 500.0 → ms

<Step9>

試験時間を「1分(60秒)」に設定します。

基本・制御条件	? 🗙
周波数レンジ 1000.00 → Hz 制御ライン数 400 → 最高観測周波数 1000.00 → Hz Δf 2.50 Hz フレームタイム 400.0 ms	OK キャンセル
制御単位 加速度 ▼ m/s ² ▼	
平均化パラメータ M 4 🚔 E 8 🚔 120 DOF	
イコライゼーションモード 標準 ▼ 詳細設定(<u>C</u>)	
ループチェック 標準 🗸	
(試験時間 時間指定 ▼ 0:01:00 - レベルスケジューリング 未定義 定義(」)	. 肖邶余(<u>D</u>)
初期出力レベル -10.00 🚔 dB レベル増減値 2.00 🚔 dB	
自動開始	
出力停止遷移時間 500.0 🚔 ms	

<Step10>

基本・制御条件	? <mark>×</mark>
周波数レンジ 1000.00 → Hz 制御ライン数 400 → 最高観測周波数 1000.00 → Hz La	OK キャンセル
制御単位 加速度 → m/s ² →	参照
平均化パラメータ M 4 🛖 E 8 🌧 120 DOF	豆琢
イコライゼーションモード 標準 - 詳細設定(<u>©</u>)	/
ループチェック 標準 ▼	
試験時間 時間指定 マ 0:01:00 ← レベルスケジューリング 未定義 定義()…	削除(<u>D</u>)
初期出力レベル -10.00 🚔 dB レベル増減値 2.00 🚔 dB	
自動開始	
出力停止遷移時間 500.0 🚔 ms	
м [*] Щ	

```
<Step11>
```

[次の定義] ボタンを押します。

<Step12>

多軸・多点 制御条件 ?	×
広達関数測定加振回数指定	zılı
✓ クロストーク制御を実施する ✓	
制御方針 標準 ▼ ドライブ節約 標準 ▼ → 1.000e-3	
制御速度 標準 → 40.0 %	
つロストーク制御情報の更新を抑制する	
クロストーク情報平均回数 標準値 → 8 回/loop	
■ 全加振グループをリミット対象とする	
	1

<Step13>

[次の定義] ボタンを押します。

<Step14>

追加可能加振グループの「垂直」を選択し、〔追加〕ボタンを押します。


```
<Step15>
```

伝達関数測定電圧を「10 (mV rms)」に設定します。

加振グループ情報[垂直] ?	×
初期出力電圧 10.0 🚔 mV rms OK	
伝達関数測定電圧 10.0 ← mVrms	
クリッピング	
クレストファクタによるクリッピング	
許容電圧 加振グループの定格値 → 10000.0 🔶 mV	
許容クリッピング比率 標準値 マ 2.0 🔷 σ	
HPF 自動設定 ▼	

<Step16>

加振グループ情報[垂直]	? 🔀
初期出力電圧	10.0 🚔 mV rms	ОК
伝達関数測定電灯	E 10.0 🚔 mV rms	=++ンセル
- クリッピング		
クレストファ	クタによるクリッピング	
許容電圧	□振グループの定格値 🚽	10000.0 mV
許容クリッピン	ジ比率 標準値 ▼	2.0 × σ
HPF 自動設定		-

<Step17>

追加可能加振グループの「水平」を選択し、「追加」ボタンを押します。

垂直 10.0 追加可能加振グループ ・ 加振グループ チャン 水平 1	1 変更(<u>C</u>)… 削除(<u>D</u>)
追加可能加振グループ 加振グループ チャン <mark>アドー 1</mark>	/ネル数
	运行(A)
	OK キャンセル

伝達関数測定電圧を「10 (mV rms)」に設定します。

加振グループ情報[水	平]	? 💌
初期出力電圧	10.0 🚔 mV rms	
伝達関数測定電圧	10.0 🚔 mV rms	+7/2//
- クリッピング		
🗌 クレストファク	タによるクリッピング	
許容電圧加	振グループの定格値 → 100	000.0 🚔 mV
許容クリッピング	比率 標準値 👻	2.0 🚔 σ
HPF 自動設定	-	

<Step19>

[OK] ボタンを押します。

加振グループ情報[水	₽]		? 💌
初期出力電圧 伝達関数測定電圧	10.0 🚔 mV rms	ОК (=++>)	er l
- クリッピング			
□ クレストファクタ	えによるクリッピング		
許容電圧 加持	&グループの定格値 🚽	10000.0 📩 mV	
許容クリッピングは	上率 標準値 🚽	2.0 🚔 o	X
HPF 自動設定	•	•	

<Step20>

グループ配置			? 💌
u振グループ €直 <平	初期出力電圧(mV) 10.0 10.0	チャンネル数 1 1	変更(<u>C</u>) 削除(<u>D</u>)
自加可能加振グループ	プ チャンネル数	道加(<u>A</u>)	

<Step21>

[次の定義] ボタンを押します。

<Step22>

「垂直」を選択し、[定義]ボタンを押します。

目標PSD配置				? 🔀
				 0K キャンセル
グループ名	PSD種別 ▲ (土三奉)	周波数範囲	rms値	定義(<u>D</u>)
WT.	(7 , 1			ゼロ目標(2)
			*	

<Step23>

PSD 定義種別の「ブレイクポイント」を選択後、 [PSD 定義] ボタンを押します。

目標PSD	? 💌
	加速度 m/s² rms 速度 m/s rms
	変位 mm rms
	PSD定義種別 ④ ブレイクポイント ① 実測 PSD定義(P) トレシス定義(D)
応答rms監視	
中町チェック 智告 相対上限レベル 相対下限レベル 絶対レベル 一 ・ ・ ・ ・ ・ ・ ・ ・ ・	サエック dB dB dB OK m/s² rms キャンセル

<Step24>

「レベル」を選択し、「周波数:10[Hz]、レベル:1[(m/s²)²/Hz]」を入力し、[追加]ボタンを押します。

ブレイクポイントPSD定	義 義		? 💌
周波数(Hz)	レベル / 傾き		
1頃きの単位 0B/0Ct		m/s²rms	rms恒変更(円)
周波数	10.00 🚔 Hz	<u>追加(A)</u>	
◎ レベル ◎ 傾き	1.0 🔷 (m/s²)²/Hz	変更(2)	OK キャンセル
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
· ·		• Č	

<Step25>

「傾き」を選択し、「周波数:100[Hz]、傾き:6[dB/octave]」を入力し、 [追加] ボタンを押します。

ブレイクポイントPSD定義	?
周波数(Hz) レベル / 傾き 10.00 1.0 (m/s²)²/Hz	
傾きの単位 dB/octave ▼ 削除(D) - ブレイクポイント	m/s² rms rms值変更( <u>R</u> )
周波数 100.00 → Hz ○レベル ●傾き 6.0 → dB/or	追加(A)           変更(C)         OK         キャンセル

<Step26>

同様に、「傾き」を選択し、「周波数:1000[Hz]、傾き:0[dB/octave]」を入力し、[追加] ボタンを押 します。

ブレイクポイントPSD定義	
周波数(Hz) レベルノ 傾き 10.00 1.0 (m/s²)2/Hz 100.00 6.0 dB/octave	1000.0 (m/s²)2/Hz
	100.0
	10.0
	1.0
	0.10
傾きの単位 dB/octave ▼ 削除( <u>D</u> )	57.3183 m/s² rms
L-イクボイント 周波数 1000.00 ← Hz ○ レベル ● t健吉 0.0 ← dB/octa	ave 変更(C) OK キャンセル

## <Step27>

[rms 変更] ボタンを押します。

ブレイクポイントPSD定義	- ? - 💌
周波数(Hz) 10.00 10.00 1.0 (m/s2)2/Hz 100.00 6.0 dB/octave 1000.00 0.0 dB/octave	1000.0 (m/s ² ) ² /Hz 100.0 10.0 1.0 0.10 10.0Hz 100.0 1000.0
傾きの単位 dB/octave ▼ 削除(D) ブレイクボイント 周波数 1000.00 ● Hz ○ レベル ◎ 傾き 0.0 ● dB/oc	303.1145     m/s² rms     rms値変更(B)       追加(A)         ctave     変更(C)     OK     キャンセル
	*

<Step28>

「新 rms 値」を選択し、「新 rms 値: 10[(m/s²) rms]」を入力し、 [OK] ボタンを押します。

	rms 値変更	? 💌
	現 rms 値 303 - 11 45 変更	m/s² rms
	●新rms値 ●比 10.0 🚔 m/s	× ²rms
	ОК	キャンセル
•		

#### <Step29>

[OK] ボタンを押します。

レイクポイントPSDカ	È			? 🔀
/周波数(Hz) 10.00 100.00 1000.00	レベル / 傾き 1.088e-3 (m/sユ)ユ/Hz 6.0 dB/octave 0.0 dB/octave	1.0 (m/s ² ) ² /Hz 0.10 1.000e-2 1.000e-3 1.000e-4 10.0 Hz	100.0	1000.0
傾きの単位 dB/oc ブレイクポイント 周波数 レベル ④ 傾き	tave   肖耶余(D) 1000.00 テ Hz 0.0 テ dB/o	10.0 m/s² rms 追加(A) ctave 変更(C)	C rmsl	変更(B) キャンセル

#### <Step30>

[トレランス定義] ボタンを押します。



<Step31>

[OK] ボタンを押します。

トレランス定義				? 🔀
	する 🔽 下限ラインを	使用する 		
	上限レベル	下限レベル	許容幅	+77670
中断チェック	6.00 🚔 dB	-6.00 🚔 dB	0.00 🚔 Hz	詳細定義( <u>D</u> ) >>
警告チェック	3.00 🚔 dB	-3.00 🚔 dB	0.00 두 Hz	
				/

#### <Step32>



## <Step33>

「水平」を選択し、[ゼロ目標]ボタンを押します。

目標PSD配置					? 💌
					OK キャンセル
グループ名 垂直 水平	PSD種別 ブレイクポイントPSD (未定義)	周波数範囲 10.00 - 1000.00 Hz	rms値 10.0068 m/s² rms		定義( <u>D</u> )
Î					ゼロ目標(Z)
				/	/
				ľ	

## <Step34>

目標PSD配置				? 💌
グループ名	PSD種別	周波数範囲	rms値	
垂直	ブレイクポイントPSD	10.00 - 1000.00 Hz	10.0068 m/s² rms	定義( <u>D</u> )
				ゼロ目標(2)
				· Å

#### <Step35>

[次の定義] ボタンを押します。



#### <Step36>

「ch1」を選択し、[変更] ボタンを押します。



## <Step37>

入力チャネル種別を「主制御」に設定します。

入力チャネル要素							? 💌
−入力チャネル情	幸辰						ОК
チャネル名	Ch1	モジュールID	000 -	Ch Ch1	•	極性 💿 正 💿 負	キャンセル
物理量	加速度	入力タイプ	チャージ入	力 (1 mV/pC	) 🗸	校正解除( <u>R</u> )	[詳細定義( <u>D</u> )>>
入力感度	3.0 🊔 p	C/(m/s²)	•			TEDS接続(E)	
入力チャネル種	別主制御	ı العالم الع	u振グループ	垂直	•	•	~
ドライブ生成の	)重み 1.0						
					<u>ه</u>		
				•	μ Π		

## <Step38>

加振グループを「垂直」に設定します。

入力チャネル要素							? 💌
−入力チャネル情	幸辰						ОК
チャネル名	Ch1	モジュールID	000 🗸	Ch Ch1	-	極性 💿 正 💿 負	キャンセル
物理量	加速度	入力タイプ	チャージ入力	ታ(1 mV/pC)	•	校正解除( <u>R</u> )	詳細定義( <u>D</u> ) >>
入力感度	3.0 🊔 p	C/(m/s²) 🖣	·			TEDS接続( <u>E</u> )	
入力チャネル種 ドライブ生成の	別 主制御 )重み 1.0		振グループ	垂直	•		

<Step39>

[OK] ボタンを押します。

入力チャネル要素							? 💌
−入力チャネル情	₽ġ						ОК
チャネル名	Ch1	モジュールID	000 🗸	Ch Ch1	•	極性 💿 正 💿 負	キシセル
物理量	加速度 🗸	入力タイプ	チャージ入	力 (1 mV/pC)	•	校正解除( <u>R</u> )	[詳細定義( <u>D</u> ) >>]
入力感度	3.0 🊔 P ⁽	0/(m/s²)	•			TEDS接続(E)	/
入力チャネル種類	引 主制御	<b>▼</b> 加	1振グループ	垂直	•		/
ドライブ生成の	重み 1.0	* *					, 
						<b>*</b> *	
						· A	

#### <Step40>

「ch2」を選択し、〔変更〕ボタンを押します。



## <Step41>

入力チャネル種別を「主制御」に設定します。

入力チャネル要素								? 💌
- 入力チャネル情	幸屁							ОК
チャネル名	Ch2	モジュールID	000	▼ Ch	Ch2	•	極性 💿 正 💿 負	キャンセル
物理量	加速度	入力タイプ	チャー	ジ入力 (1 m	ıV/pC)	•	校正解除( <u>R</u> )	[詳細定義(D)>>
入力感度	3.0 🌩 P	C/(m/s²)	•				TEDS接続(E)	
入力チャネル種 ドライブ生成の	別 <mark>主制御</mark> )重み 1.0		□振グル~	-ブ 垂直		•		-

## <Step42>

加振グループを「水平」に設定します。

入力チャネル要素	l						? 🔀
- 入力チャネル情	幸閒						ОК
チャネル名	Ch2	モジュールID	000 🗸	Ch Ch2	•	極性 💿 正 💿 負	キャンセル
物理量	加速度	入力タイプ	チャージ入	力 (1 mV/pC)	•	校正解除( <u>R</u> )	[詳細定義( <u>D</u> ) >>
入力感度	3.0 🊔 p	C/(m/s²)	•			TEDS接続(E)	
入力チャネル種 ドライブ生成の	別 主制御 D重み 1.0		ロ振グループ	<del>水平</del>			2

<Step43>

[OK] ボタンを押します。

入力チャネル要素							? 🔀
- 入力チャネル情	幸臣						OK
チャネル名	Ch2	モジュールID	000	Ch Ch2	•	極性 💿 正 💿 負	キシセル
物理量	加速度	▼ 入力タイプ	チャージス	力(1 mV/pC)	•	校正解除( <u>R</u> )	詳細定義(D) >>
入力感度	3.0 🊔	oC/(m/s²)	•			TEDS接続(E)	/
入力チャネル種類	引 主制御	<b>▼</b> カ	1振グループ	水平	•		/
ドライブ生成の	重み 1.0	* *				/	
						**	
						Ϋ́ Π	

## <Step44>

入力チャネル配置										? 💌
No. チャネル名 1 Ch1 2 Ch2	グルーブ名 <u>●直</u> 水平	割当 000-Ch1 000-Ch2	入力感度 3.0 pC/(m/s²) 3.0 pC/(m/s²)	入力タイプ チャージ入力 (1 mV/pO) チャージ入力 (1 mV/pO)	極性正正	種別 主制御	rms監視	PSD監視	USyt	<b>送加(台)</b> 変更(○) 剤原☆(D) ● 素使用 ▼ EDS更新(D)
表示加振グループ	全てを表示		•				参照	2	登録	0K キャンセル
							•	Ť		

#### <Step45>

[次の定義] ボタンを押します。



#### <Step46>

「保存しない」を選択し、 [OK] ボタンを押します。

保存条件
<ul> <li>保存する</li> <li>保存先を指定する</li> <li>参照</li> </ul>
☑ テストファイル名をプリフィックスにする
シーケンス番号 開始値 1 最小桁数 3 
□ 定期保存
☑テスト終了時に保存
#### <Step47>

これで定義が完了です。



<テストの保存>

#### <Step1>

[定義保存] ボタンを押します。



# <Step2>

ファイル名を入力し、[保存]ボタンを押します。

🏫 名前を付けて保存	Ŧ			<b>×</b>	
保存する場所(J):			G 🤌 📂 🖽 🗸		
(Fig	名前	*	更新日時	種類	
会が 最近表示した場所		検索条件に一致する項目は	ありません。		
					***
デスクトップ					
				-	
1761-9-	•	III		۴.	
	ファイル名( <u>N</u> ):	TestMRandom.mran2		保存(S)	
ネットワーク	ファイルの種類(工):	マルチランダムテスト定義ファイル(*.mran	2) •	キャンセル	
				÷	

<テストの実行>

#### <Step1>

[実行開始] ボタンを押します。



<Step2>

[伝達関数測定開始(開始)] ボタンを押します。

[伝達関数測定開始(開始)]ボタンを押すと、ループチェックが自動的に行われ、伝達関数の測定が 実施されます。

TestMRandom.mran2 - K2/Multi-Random ファイル(F) テスト定義(T) 東行場合(P) 編	(生作) 表示(V) ウィンドウ(W) オブション(O) ヘル	7(H)			83
重直 水平		$\Box$ $\sim$			
目標 レベル ズ 3.1644 -10.00 c6	落 ドライブ 0.0 0.0 / / / / / / / / / / / / / / / /	伝達関数測定開始待ち	Drive Pol Alarm	Abort	
目標·応答グラフ 伝達関数	実行ステータス			Lotte	
伝達開数[伝達開数]				-10.0	
「白豆」「白豆」「白豆」「豆					
1.0 (w/s2)/w/	OH70h1		Ch1/Ch2		<b>*</b>
1.10 0.10					
				0 2 2.	.00
茶の差加 1.000-3 20001000000000000000000000000000000000					
1,000-4					
SCADE 180.0 degree					
0.0					
-180.0 -180.0					
1.0 (#/52)/#¥	Ch2/Ch1		Ch2/Ch2		
0.10					
1.000e-2 <b>2000</b> 00000000000000000000000000000000					
1.000e-3					
1.000er4					
180.0 degree					
0.0					
-180.0					
2.50 Hz 10.0	100.0 10	00.0 2.50Hz 10.0	100.0	1000.0	
E = K					
		1		NUM 2013/07/18 9:14	:02

<Step3>

伝達関数測定が終了すると、加振開始待ち状態になります。 [加振開始(開始)] ボタンを押すと、初 期ループチェック、初期イコライゼーションが自動的に行われ、初期加振レベル(この例では-10dB) で試験が実施されます。



<Step4>

初期イコライゼーションが終了すると、初期加振レベル(この例では-10dB)での加振が行われます。 加振レベルアップボタンを押して、加振レベルを 0dB にします。



#### <Step5>

加振レベルが 0dBになると、テスト時間の計時が始まります。



<Step6>

テスト時間が満了するとテストが終了します。

[実行終了] ボタンを押すと、テスト定義モードに戻ります。

		ž <b>Č</b>	
📲 TestMRandom.mran2 - K2/Multi-Random			
ファイル(E) デスト定義(I) 東行操作(E) 編集( 新規(F液 周く 定義保存 データ保存 重直 水平	<ul> <li>3) 表示(M) ウィンドウ(M) オオションの へしア(E)</li> <li>(A) ション (A) - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -</li></ul>	計約         再案行         中止         一時等止         加振用器	
目標 レベル 広答 10.0068 0.00 10.0 ほ m/4 目標・応答グラフ 伝達関数	ドライブ     テスト経過時間     残」       240     30.4     0.01.00     0.00:       マッショ     ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	00 加振終了 Drive Limit Alarm	Abort
次の定義 定義の変更 定義の変更 1.00mm2	Ĩ   ⊶ X   II #ŭ	応答 目標 警告上限 警告上限 管告下限 中断上限	0.00 3B 後,病値 2.00
1.000e-4 定義の資料時 1.000e-5 1.000e-5 1.000e-5 1.000e-7 1.000e-7 1.000e-7			
末注茶状態 1.000e-10 1.0(a/s1)t/Hz 0.10 0.01 1.000e-2	ж <del>т</del>		
1.000e-3 1.000e-4 1.000e-5 1.000e-6 1.000e-6			
1.000e-8 1.000e-8 1.000e-10 10.0 Hz	100.0		
			NUM SCRL 2013/07/18 9:38:25

# 3.2 実測 PSD 試験

<例題>

下記のような実測 PSD 試験を行うことを考えます。

[目標パターン]

垂直、水平方向の実測 PSD データ

[制御条件]

周波数レンジ:	2000Hz
制御ライン数:	400 ライン

[試験時間]

1分

[使用するセンサ等の情報]

以下の圧電型の加速度ピックアップを2つ使用します。

ch1.: 主制御用、感度 3pC/(m/s²)、実測 PSD 制御

ch2.: 主制御用、感度 3pC/(m/s²)、実測 PSD 制御

ただし、これらの情報(チャネル名、感度)はすでに入力チャネル情報(この例では「SysInp01」)に 登録されているものとします。

加振システムの定格等の情報もすでに加振システム情報(この例では「System1」)に登録されているものとします。

<操作手順>

<Step1>

[新規作成] ボタンを押します。



```
<Step2>
```

「加振システム構成(複数グループ)」を選択します。

加振システム構成設定	? 💌	
加振システム構成		
◎ 単一グループ		
◎ 複数グループ▼		
加振システム 情報 Svotem1		
aystem		***
□ 入力環境情報選択		
SysInp01		
ОК	キャンセル	

# <Step3>

「加振システム情報」を選択します。

加振システム構成設定	? 💌	
加振システム構成		
◎ 単一グループ		
◉ 複数グループ		
加振システム情報		
System1		
SysInp01		, Ë
ОК	キャンセル	

<Step4>

「入力チャネル情報」を選択します。

加振システム構成設定 加振システム構成 ○単一グループ ● 複数グループ	? 💌	
● Taxx>ルーン - 加振システム情報 System1		
✔ 入力環境情報選択 SysInp01		
ОК	キャンセル	

<Step5>

[OK] ボタンを押します。

加振システム構成設定	? <b>×</b>	
加振システム構成		
◎ 単一グループ		
◎ 複数グループ		
加振システム情報	 ]	
System1		
☑ 入力環境情報選択		
SysInp01		
	-`.+z.II.	

<Step6>

[次の定義] ボタンを押します。

🏫 新規テス	∽定義 - K2,	/Multi-Rando	om		
ファイル( <u>E</u> )	テスト定	義( <u>T</u> ) 実行技	操作( <u>P</u> ) 編集	集( <u>E</u> ) 表示(	
	Est.		Lb		
新規作成	開く	定義保存	データ保存	印刷	
目標		レベル	応	答	
		d	8		
	テスト定	義			
	テスト気	E義			
次の定義	ロテスト	定義慎報	** - 13		
	<b>S</b> I/O	) モジュールオ = ヽ ヮ ー ノ /#:	構成 ≝₽		*
		氏ン人ナム  月 ト, 明御冬/性	权		
完美の亦画		▶`णोण√未1千 曲.多占钏紉终	≟/⊈		
AL-ROZET		こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころの目的にある。 こころのの目的にある。 こころの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころのの目的にある。 こころののの目的にある。 こころののの目的にある。 こころののの目的にある。 こころののの目的にある。 こころののの目的にある。 こころののののののののののののののののののののののののののののののののののの	定		
		即目標 11日標	-		
		リチャネル			

<Step7>

周波数レンジを「2000Hz」に設定します。

基本・制御条件	? <b>X</b>
	OK ・ンセル
制御単位 加速度 → m/s ² → 平均化パラメータ M 4 章 E 8 章 120 DOF	<b>参照</b> 登録
イコライゼーションモード 標準 マ 詳細設定(©)… ループチェック 標準 マ	
<ul> <li>試験時間 時間指定 ▼ ↓ レベルスケジューリング 未定義 定義(L)…</li> <li>初期出力レベル -10.00 → dB レベル増減値 2.00 → dB</li> </ul>	削除( <u>D</u> )
■ 自動開始 出力停止遷移時間 500.0 ÷ ms	

<Step8>

制御ライン数を「400」に設定します。

, Č
基本·制御条件         ?
■波数レンジ 2000.00 ▼ Hz 制御ライン数 400 ▼ 最高観測周波数 2000.00 ● Hz OK Δf 5.00 Hz フレームタイム 200.0 ms
制御単位     加速度     ▼     m/s²     ●       平均化パラメータ     M     4     E     8     120     DOE
イコライゼーションモード 標準 → 詳細設定( <u>C</u> )
ループチェック 標準 ▼ 試験時間 時間指定 ▼ ● レベルスケジューリング 未定義 定義(L)… 削除(D)
1999年1979年1979日 ●自動開始 出力停止速移時間 500.0 ← ms

# <Step9>

試験時間を「1分(60秒)」に設定します。

基本・制御条件	x
制御単位 加速度 ▼ m/s ² ▼	
平均化パラメータ M 4 🗧 E 8 🚔 120 DOF	
イコライゼーションモード 標準	
ループチェック 標準 ・	
【試験時間 時間指定 → 0:01:00 → レベルスケジューリング 未定義 定義(L) 削除(D)	
初期出力レベル -10.00 🚔 dB レベル増減値 2.00 🚔 dB	
自動開始	
出力停止遷移時間 500-0 🔶 ms	

<Step10>

[OK] ボタンを押します。

基本・制御条件 ?
周波数レンジ 2000.00 → Hz 制御ライン数 400 → 最高観測周波数 2000.00 → Hz OK Δf 5.00 Hz フレームタイム 200.0 ms
制御単位 加速度    m/s ²
平均化パラメータ M 4 E 8 和 120 DOF
イコライゼーションモード 標準
ループチェック 標準 ▼
試験時間 時間指定 マ 0:01:00 🚔 レベルスケジューリング 未定義 定義(L) 削除(D)
初期出力レベル -10.00 🚔 dB レベル増減値 2.00 🚔 dB
自動開始
出力停止遷移時間 500.0 🛖 ms

## <Step11>

[次の定義] ボタンを押します。



# <Step12>

[OK] ボタンを押します。

多軸・多点 制御条件	? 🔀
伝達関数測定加振回数指定 標準値 ▼ → 8 回	
☑ クロストーク制御を実施する	++,200
制御方針 標準 ▼ ドライブ節約 標準 →	1.000e-3
制御速度 標準 → 40.0 %	
■ クロストーク制御情報の更新を抑制する	
クロストーク情報平均回数 標準値	
■ 全加振グループをリミット対象とする	
	<b>*</b> *
	Ň

<Step13>

[次の定義] ボタンを押します。



## <Step14>

追加可能加振グループの「垂直」を選択し、「追加」ボタンを押します。

	加振グループ配置			? 🔀
	加振グループ	初期出力電圧(mV)	チャンネル数	
				変更( <u>C</u> )
				 削除(D)
	└└└	-Ĵ		
	加振グループ	チャンネル数		
	<b>垂直</b> 水平	1		
		'	追加( <u>A</u> )	
			/	
Λ			/	
				ギャノセル
· ۲		***		
		*		

# <Step15>

伝達関数測定電圧を「10 (mV rms)」に設定します。

加振グループ情報	[垂直]	? 💌
初期出力電圧	10.0 💼 mV rms	
伝達関数測定電	〕王 10.0 🚔 mV rms	++>/2//
- クリッピング		
🗌 クレストフ	ァクタによるクリッピング	
許容電圧	加振グループの定格値 🗸	10000.0 📩 mV
許容クリッビ	ノグ比率 標準値 🚽	2.0 ÷ σ
HPF 自動設	Ē	

# <Step16>

[OK] ボタンを押します。

初期出力電圧 10.0 ⇒ mVrms OK 伝達関数測定電圧 10.0 ⇒ mVrms
伝達関数測定電圧 10.0 ➡ mVrms
クリッピング
許容電圧 加振グループの定格値 ▼ 10000.0 mV
許容クリッピング比率 標準値 < 2.0 ÷ σ
HPF 自動設定 ▼

# <Step17>

追加可能加振グループの「水平」を選択し、「追加」ボタンを押します。

	加振グループ配置			? 💌
	加振グループ 垂直	初期出力電圧(mV) 10.0	チャンネル数 1	変更( <u>C</u> ) 削除( <u>D</u> )
÷;;	- 追加可能加振グルーフ 加振グループ 「 <u>パ</u> ギ	^ダ チャンネル数	注度力D(A)	0K キャンセル

# <Step18>

伝達関数測定電圧を「10 (mV rms)」に設定します。

加振グループ情報[水3	₽]	? 💌
初期出力電圧	10.0 📥 mV rms	
伝達関数測定電圧	10.0 🚔 mV rms	
- クリッピング		
2 クレストファクタ	1によるクリッピング	
許容電圧 加热	ジループの定格値 🚽	10000.0 🚔 mV
許容クリッピングと	:率 標準値 👻	2.0 🚔 σ
HPF 自動設定		•

# <Step19>

[OK] ボタンを押します。

加振グループ情報[水平]		? 💌
初期出力電圧	10.0 🚔 mV rms	ОК
伝達関数測定電圧	10.0 🚔 mV rms	キャンセル
- クリッピング		
2 クレストファクタに	よるクリッピング	
許容電圧 加振り	ループの定格値 🚽	10000.0 🚔 mV
許容クリッピング比率	☑ 標準値 🚽	2.0 🚔 o
HPF 自動設定	•	•
	4	

<Step20>

[OK] ボタンを押します。

u振グループ配置			-?
加振グループ	初期出力電圧(mV)	チャンネル数	
垂直 水平	10.0 10.0	1 1	変更( <u>C</u> ) 削除( <u>D</u> )
○追加可能加振グル 加振グルーフ	レープ ⁹ チャンネル数	〕追加( <u>A</u> )	]
			0K オャンセル
			Ť

### <Step21>

[次の定義] ボタンを押します。



# <Step22>

「垂直」を選択し、[定義]ボタンを押します。

目標PSD配置				? 💌
				0K キャンセル
グループ名 ● <u>単直</u> 水平 ●	PSD種別 (未定義) (未定義)	周波数範囲	rms/直	定義(D) ゼロ目標(Z)

```
<Step23>
```

PSD 定義種別の「実測」を選択後、 [PSD 定義] ボタンを押します。

目標PSD		? 💌
		加速度 m/s² rms 速度 m/s rms
		变位 mm rms
		PSD定義種別 ● ブレイクポイント
		PSD定義(P)
	/	・レランス定義(1)…
応答rms監視 中断チェック	整告手。如ク	
	==)+92	<b>参照</b> 登録
相対下限レベル		OK
絶対レベル	m/s² rms	(キャンセル)
	***	

<Step24>

[CSV ファイルの読み込み] ボタンを押します。



### <Step25>

[ファイル選択] ボタンを押します。



## <Step26>

読み込みたいファイルを指定し、[開く」を押します。

👜 CSVファイル読み	り込み		×
ファイルの場所(]):		G 🌶 📂 🖽 -	
œ	名前	更新日時	種類
最近表示した場所	DATA01.csv	2013/07/18 9:33	Microsoft Offi
	TestSweep2.csv	2013/07/17 14:09	Microsoft Offi
デスクトップ			
ライブラリ			
コンピューター			
			•
ネットワーク	ファイル名(N): DATAULOSV		
	J*17004±+R(T)	/	TTY Ch
	☑ カンマ □ タブ □ セミコロン □ ス	x-7	
	列数 5		
		/	H

# <Step27>

[OK] ボタンを押します。

ファイル	読込み		? 💌
列番 1 2 3	号 項目名 FreatHzJ CH1[(m/s2)2/ CH2[(m/s2)2/	割当て	PSD単位 (m/s ² ) ² /Hz 割当て ● 周波数 ○ レベル ○ 使用しない ファイル選択 QK キャンセル

## <Step28>

[rms 値変更] ボタンを押します。



#### <Step29>

「新rms 値」を選択し、「新rms 値: 10[(m/s²) rms]」を入力し、 [OK] ボタンを押します。



## <Step30>

[トレランス定義] ボタンを押します。



<Step31>

[OK] ボタンを押します。

トレランス定義				?
☑ 警告ラインを定義	する 「「下限ラインを」	使用する		OK
	上限レベル	下限レベル	許容幅	キシセル
中断チェック	6.00 🚔 dB	-6.00 🚔 dB	0.00 🚔 Hz	詳細定義( <u>D</u> ) >>
警告チェック	3.00 🊔 dB	-3.00 🚔 dB	0.00 🚔 Hz	/
				/

<Step32>

[OK] ボタンを押します。



### <Step33>

「垂直」と同様に、「水平」も定義した後、 [OK] ボタンを押します。



## <Step34>

[次の定義] ボタンを押します。



### <Step35>

「ch1」を選択し、 [変更] ボタンを押します。



# <Step36>

入力チャネル種別を「主制御」に設定します。

入力チャネル要素								? 💌		
- 入力チャネル情	南							ОК		
チャネル名	Ch1	モジュールID	000 👻	Ch	Ch1	•	極性 💿 正 💿 負	キャンセル		
物理量	加速度 👻	入力タイプ	チャージ入び	ታ(1 m)	V/pC)	•	校正解除( <u>R</u> )	[詳細定義( <u>D</u> ) >>		
入力感度	3.0 🊔 p0	C/(m/s²)	•				TEDS接続(E)			
入力チャネル種) ドライブ生成の	別 <u>主制御</u> D重み 1.0		ロ振グループ	垂直		•				
				C	フ					
				Ì	<u>9</u>					

<Step37>

加振グループを「垂直」に設定します。

入力チャネル要素							? 💌
- 入力チャネル情	幸辰						ОК
チャネル名	Ch1	モジュールID	000 👻	Ch Ch1	•	極性 💿 正 💿 負	キャンセル
物理量	加速度	入力タイプ	チャージ入力	] (1 mV/pC)	•	校正解除( <u>R</u> )	[詳細定義( <u>D</u> )>>
入力感度	3.0 🌩 p	C/(m/s²)	•			TEDS接続(E)	
入力チャネル種	別主制御	<b>•</b> 1	1振グループ	垂直	•	ר	
ドライブ生成の	)重み 1.0					<b>K</b>	

# <Step38>

[OK] ボタンを押します。

入力チャネル要素							? 💌
入力チャネル情	幸辰						OK
チャネル名	Ch1	モジュールID	000 🗸	Ch Ch1	•	極性 💿 正 💿 負	キーンセル
物理量	加速度	・入力タイプ	チャージ入	力 (1 mV/pC)	•	校正解除( <u>R</u> )	詳細定義( <u>D</u> ) >>
入力感度	3.0 🚔 F	C/(m/s²)	•			TEDS接続( <u>E</u> )	/
入力チャネル種類	引 主制御	<b>、</b> 加	服グループ	垂直			/
ドライブ生成の	重み 1.0	* *					

しノ

# <Step39>

「ch2」を選択し、 [変更] ボタンを押します。

ο.	チャネル名	グループ名	割当	入力感度	入力タイプ	極性	種別	rms監視	PSD監視	リミット	isto(A
	Ch1	垂直	000-Ch1	3.0 pC/(m/s²)	チャージ入力 (1 mV/pC)	正	主制御				
		포브	000-012	5.0 pC/(m/s4)			жіхн				変更((
											末使用
											TEDSE
											TEDOR
											/
表	示加振グルーナ	全てを表示		•				参加		登録	++>>1
										/	
										/	
	<b>^</b>	6								***	
	× (	<b>N</b>									

# <Step40>

入力チャネル種別を「主制御」に設定します。

入力チャネル要素								? 🔀
−入力チャネル情	幸辰							ОК
チャネル名	Ch2	モジュールID	000 🗸	Ch C	Oh2	•	極性 🖲 正 💿 負	キャンセル
物理量	加速度 🗸	入力タイプ	チャージ入び	力(1 mV)	/pC)	•	校正解除( <u>R</u> )	[詳細定義( <u>D</u> ) >>
入力感度	3.0 🌻 p(	C/(m/s²)	•				TEDS接続( <u>E</u> )	
入力チャネル種 ドライブ生成の	別 <u>王制御</u> )重み 1.0		ロ振グループ	垂直		Ŧ		2
			$\overline{}$					
					*	Ť		
					Ţ		J	

<Step41>

加振グループを「水平」に設定します。

入力チャネル要素							? 💌
−入力チャネル情	幸局						ОК
チャネル名	Ch2	モジュールID	000 🗸	Ch Ch2	•	極性 💿 正 💿 負	キャンセル
物理量	加速度 🗸	入力タイプ	チャージ入び	ታ(1 mV/pC)	•	校正解除( <u>R</u> )	[詳細定義( <u>D</u> ) >>]
入力感度	3.0 🌻 P	0/(m/s²)	•			TEDS接続( <u>E</u> )	
入力チャネル種	別主制御	• (h	1振グループ	7K <del>11</del>	-		
ドライブ生成の	)重み 1.0	÷			٢		
						$\backslash$	

# <Step42>

[OK] ボタンを押します。

入力チャネル要素						? 💌
- 入力チャネル情	幸鼠					ОК
チャネル名	Ch2	モジュールID	000 <b>-</b> Cł	n Ch2 🗸	極性 ◎正 ◎負	キシセル
物理量	加速度	・入力タイプ	チャージ入力 (1	mV/pC) 🚽	校正解除( <u>R</u> )	詳細定義( <u>D</u> ) >>
入力感度	3.0 🊔 p	C/(m/s²)	•		TEDS接続(E)	
入力チャネル種類	到 主制御	<b>、</b>	1振グループ 🌃	<u> </u>	- /	/
ドライブ生成の	重み 1.0	·				
					***	

## <Step43>

[OK] ボタンを押します。

カチャネル配置										? 🗾
No. チャネル名	グループ名 垂直	割当 000-Ch1	入力感度 3.0 pC/(m/s ² )	入力タイプ チャージ入力 (1 mV/pC)	極性 正	種別 主制御	rms監視	PSD監視	Ս≋ット	追加( <u>A</u> )
2 Ch2	永平	000-Ch2	3.0 pC/(m/s²)	チャージ入力 (1 mV/pC)	芷	主制御				変更( <u>C</u> )
										削除(D)
										未使用
										TEDS更新(丁)
										ОК
表示加振グループ	全てを表示		•				参照	8	登録	
									/	
							<b>\$</b>	••		

## <Step44>

[次の定義] ボタンを押します。



```
<Step45>
```

「保存しない」を選択し、 [OK] ボタンを押します。

	保存条件
*	<ul> <li>○ 保存する</li> <li>● 保存しない</li> <li>● 保存先を生まする</li> <li>● 保存先を生まする</li> <li>● 保存しない</li> <li>● 保存しない<!--</th--></li></ul>
0	シーケンス番号 開始値 1 🖕 最小桁数 3 🛬
	□ 定期保存
	☑テスト終了時に保存

## <Step46>

これで定義が完了です。



<テストの保存>

#### <Step1>

[定義保存] ボタンを押します。



#### <Step2>

ファイル名を入力し、[保存]ボタンを押します。

🔛 名前を付けて保存	7			
(保存する場所(1):	דלגבא איז איז 👔	G 🤌 📂 🛄 🗸		
Ca.	名前	更新日時	種類	
最近表示した場所	TestMRandom.mran2	2013/07/17 18:15	MRAN2 ファイ	
デスクトップ				
ີ່ ອາງັອນ				
(人) コンピューター				
ペレーク ネットワーク				
	<		4	
l	ファイル名(N): TestMRandom2.mran2 ファイルの種類(T): ファイルの種類(T): ファイル(オーマット完美ファイル(オーマット))		保存(S)	•**
	27 TANATEXET. (AND YOARY VINE48/AJ M(#1114115	•/ •	112 CM	
			•	

<テストの実行>

#### <Step1>

[実行開始] ボタンを押します。



<Step2>

[伝達関数測定開始(開始)] ボタンを押します。

[伝達関数測定開始(開始)]ボタンを押すと、ループチェックが行われ、伝達関数測定が実施されます。



<Step3>

伝達関数測定が終了すると、加振開始待ち状態になります。 [加振開始(開始)] ボタンを押すと、初期ループチェック、初期イコライゼーションが自動的に行われ、初期加振レベル(この例では-10dB) で試験が実施されます。



<Step4>

初期イコライゼーションが終了すると、初期加振レベル(この例では-10dB)での加振が行われます。 加振レベルアップボタンを押して、加振レベルを 0dB にします。



### <Step5>

加振レベルが 0dBになると、テスト時間の計時が始まります。


<Step6>

テスト時間が満了するとテストが終了します。

[実行終了] ボタンを押すと、テスト定義モードに戻ります。



# 第4章 テストの定義

### 4.1 概要

本システムでは、ある試験を実施するのに必要な情報の一式を「テスト」と呼びます。

ある試験を実行するには、まずその試験を実施するための「テスト」を定義することが必要です。 本章では、この「テスト」の定義の各項目について説明します。

「テスト」定義の実体は、Table4-1の情報を順に設定して行くことです。

Iable.4-1 アスト種別と	正義する情報
テスト種別	ランダム
設定情報	
(1) I/O モジュール構成	0
(2)加振システム情報	0
(3)基本・制御条件	0
(4)多点・多軸制御条件	0
(5)加振システム設定	0
(6)制御目標	0
(7)入力チャネル	0
(8)データ保存条件	0

Table.4-1 テスト種別と定義する情報

○:必ず設定しなければならない情報

-:設定しなくてよい情報

△:必要に応じて設定する情報

定義が完了した「テスト」の情報一式は、これを所定の形式のファイル「テストファイル」として、 格納することができます。

一旦定義した「テスト」の情報が「テストファイル」として格納してある場合には、そのファイルを ロードしてくるだけで、試験の実施が可能です。

### 4.2 基本·制御条件

K2 コントローラの制御条件を設定します。

基本・制御条件	? <mark>- x -</mark>
周波数レンジ 2000.00 ▼ _{Hz} 制御ライン数 400 ▼ 最高観測周波数 2000.00 ← Hz Δf 5.00 _{Hz} フレームタイム 200.0 _{ms}	OK キャンセル
制御単位 加速度 ▼ m/s ² ▼	
平均化パラメータ M 4 🚔 E 8 🚔 120 DOF	N
イコライゼーションモード 標準 ・	
ループチェック 標準 🗸	
試験時間 時間指定 → レベルスケジューリング 未定義 定義(1)	) 削除( <u>D</u> )
初期出力レベル -10.00 🚔 dB レベル増減値 2.00 🚔 dB	
出力停止遷移時間 500.0 🛖 ms	

#### 4.2.1 周波数レンジ

(1) 意味

スペクトル分析の周波数レンジを指定します。

再現すべき目標 PSD に含まれる周波数成分を包含するよう、適切な値を設定してください。

使用している入力チャネル数等の兼ね合いもありますが、本項目の設定値が大きすぎる場合に は、CPU

の能力限界によって、リアルタイム動作ができなくなることがあります。その場合には、設定 値を小さくする等の対策を施してください。

なお、サンプリング周波数 f_sは、周波数レンジ f_{max} と次の関係で結ばれています。

 $f_{s} = 2.56 f_{max}$ 

#### 4.2.2 制御ライン数

(1) 意味

スペクトル分析の分解能を指定します。

スペクトル分析の分解能はライン数 L で指定します。

本システムでは、ライン数Lはスペクトル分析のポイント数Nと、

L = N / 2.56

の関係があります。

制御フレーム分のNポイントの波形データをスペクトル分析すると、周波数領域のN/2 ライン 分の複素スペクトルデータに変換されます。ライン数とは、このN/2 ライン分の複素スペクトル データのうち、アンチエイリアシングフィルタの特性を考慮して、(低周波側から)何ライン目 までのデータを制御実施上の有効データとするかを規定したものです。

また、周波数分解能∆fは、次のように決まります;

 $\Delta f = f_{max} / L (= f_s / N)$ 

<ライン数の選択基準>

ライン数の選択は、制御すべき被制御系の伝達特性に合わせて選択してください。

制御を成功させるには、被制御系のインパルス応答の大部分が設定した制御フレームの中に収 まっていることが必要です。

制御の効果が思わしくない場合には、ライン数の設定を1段階大きくしてみてください。 しかし、不必要に大きなライン数設定には、有利な点は何もありません。

### 4.2.3 最高観測周波数

(1) 意味

入力チャネルで観測する周波数の上限値を指定します。 デフォルトは周波数レンジで設定した周波数になります。

#### 4.2.4 制御単位

(1) 意味

K2 コントローラが制御対象とする物理量(制御量)の単位を設定します。

制御単位が、テストを定義する上での単位になります。

加振システム情報に、「その他の制御量」の定格情報を設定した場合のみ、「その他の制御 量」で設定した単位が、制御単位として追加されます。

#### 4.2.5 平均化パラメータ

(1) 意味

スペクトル推定の正確さ(平均操作)の度合いを示す「自由度」を指定します。

ランダム信号を分析する場合、1回のFFT分析によって得られるスペクトルデータは非常に大きなバラツキを含んでいるので、正確にスペクトル推定を行うには、平均操作が不可欠です。 なぜなら、ランダム信号のスペクトル分析には次のような特徴があるからです。

- 不規則信号のスペクトル分析データは真値とみなしえるものではなく、一定の確率的な性格を帯びた推定値にすぎない。
- ② その推定値としての確からしさ(信頼度)は、「自由度」によって表わされる。自由度が 大きいほど、その推定値の信頼度は高い。
- 「自由度」は、次のパラメータで指定します。
- ① ループあたり平均回数 M

制御ループ1ループあたりの応答分析を行うフレーム数を指定します。

② ループ加重平均パラメータ E

制御ループ毎に得られる応答スペクトルデータを加重平均する際のパラメータです。 上記 M と E の値が決まると、応答分析の自由度 K (DOF) が決まります。 Kの値は、

K = 2M(2E - 1)

によって計算されます。安定した制御系を形成するためには、Kの値は大きい方がよく、目安として

#### K > 100

となるよう、MとEの値を決定されることをお勧めします。

ただし、あまり大きな値にすると制御速度(追従性)が遅くなるのでご注意ください。

### 4.2.6 イコライゼーションモード

(1) 意味

制御運転開始(ホワイトノイズ様出力開始)から、応答スペクトルが目標スペクトルに(トレ ランスの範囲で)一致し、テスト経過時間の計時が始まるまでの初期イコライゼーション段階で の制御速度を指定します。

1. 速い

速い応答速度で制御を行うことを設定します。

剛性の高い安定した供試体等には ' 速い ' を指定することも適切な場合もあります。

2. 標準

想定される一般的な状況において、適切と思われる制御速度を設定します。

#### 特別の判断に基づく場合を除いては、通常、標準を設定してください。

3. 遅い

遅い応答速度で制御を行うことを設定します。

非線形的な応答(例えば、加振レベルが変化すると異なる特性を示す等)がみられる 供試体の場合には'遅い'を選択することが有効である場合があります

4. 数値指定(または詳細設定ボタン)

イコライゼーションモードの各パラメータは、 '速い'、 '標準'、 '遅い' におい て適切に設定していますが、この '数値指定'は極めて制御困難な供試体等の試験を行 う際に、各制御パラメータを微調整するために設けられています。

なお、本項目の影響は、冒頭に述べたように初期イコライゼーション段階において顕著に現れ ますが、計時開始後のテスト実施中にも制御パラメータとしての本項設定値は有効です。

### 4.2.7 ループチェック

(1) 意味

ループチェック機能による制御運転時における制御ループの異常監視実施等の判断基準の厳し さを指定します。

ループチェックが行われるのは、次の動作時です;

- I. ループチェック時(伝達関数の測定前)
- Ⅱ. 初期イコラーゼーション時
- Ⅲ. 制御運転中

ループチェックの対象は、以下の入力チャネルです。

- I. ループチェック時(伝達関数の測定前)
  - ・使用している全チャネル
- Ⅱ. 初期イコラーゼーション時
- Ⅲ. 制御運転中
  - ・主制御チャネル
  - ・制御チャネル
  - ・モニタ rms 監視を実施しているモニタチャネル
  - ・監視プロファイルが設定されているモニタチャネル

伝達関数の測定前のループチェックは、加振機1台毎にホワイトノイズによる加振を行うことで 実施されます。ループチェック電圧は「加振グループ」毎に規定されている「初期出力電圧」で 指定します。詳細は"4.4 加振システム設定"を参照してください。

初期イコライゼーション時のループチェックは、各「加振グループ」の「初期出力電圧」とし て指定されたレベルのホワイトノイズ様出力信号を出力して制御ループの異常を調べ、それが問 題なければ、引続き実行される制御運転中にも常に異常監視を行う、という形で実施されます。

本項目では、ループチェック実施時の異常検知の判断基準を、次の3段階の中から選択設定します;

1. 厳しい: 最も厳しい判断基準を設定します。

線形性の良好な供試体の場合に用いることができます。

2. 標準 : 通常予想される程度の非線形性を許容する判断基準を設定します。

緩い : かなり大きな非線形性を許容する判断基準を設定します。

・標準'の設定ではどうしてもループチェックをパスできないような場合、この設定をお使い ください。

#### 4.2.8 試験時間

(1) 意味

試験実施時間を指定します。

すなわち、システムは、試験開始後ここに指定された時間の経過があった時点で自動的に信号 出力を停止します。

< '無限'の指定>

試験時間を指定したくないときは、 '無限'を選択してください。

この場合には、保護機能による中断の発動を除いては、[中止]ボタンの押下があるまで運転 が継続されます。

<'時間指定'>

「時間」のデータをh,「分」のデータをm,「秒」のデータをsと表わすとき、

hhh:mm:ss

の形でデータを入力します。このとき、「秒」→「分」等の換算はシステムが自動的に行います。

(例 1) 「10: 20: 30」の入力は「10 時間 20 分 30 秒」を意味します。

(例 2) 「50:0」の入力は「50分」を意味します。

(例 3) 「1000」の入力は「16分40秒」を意味します。

#### 4.2.9 初期出力レベル

(1) 意味

指定された目標スペクトルによる振動試験を実施する前に、より低い振動レベルで目標に相似 のスペクトルを実現し、供試体や振動試験機の様子をみてみる必要のある場合があります(貴重 な供試体,大型加振システムの場合等)。

このような、最初の実現の目標となる低レベルの振動のことを「初期レベル」と呼ぶことにし、 本項目ではこの「初期レベル」の設定を行います。

初期レベルの指定は、目標スペクトルのレベルを基準(0 dB)としたときのレベル比(dB 値) を指定する、という形で実施します。

加振レベルの設定変更(0 dB 以下)は、実加振の試験実施中にも随時実施できるのですが、本 項目にあらかじめ必要値を設定しておけば、「うっかり初めから 0 dB で加振してしまった」とい ったミスが防げるはずです。この fool-proof の意味を除けば(加振レベルはいつでも変更できるわ けですから)、本項目には余り大きな意味はありません。

<運転時における加振レベルの変更>

設定されている加振レベルの変更は、所定のボタンをマウスでクリックすることで実現できま す。この場合、矢印キーの押下1回毎に、指定されている「増減値」分だけレベルが増加(減 少)します。

#### 4.2.10 レベル増減値

(1) 意味

加振レベルの変更を行う際の増減値のことです。

加振中にも、所定のダイアログボックスを開くことで変更することができます。

#### 4.2.11 自動開始

(1) 意味

初期レベルに 0dB 以下の値を設定した場合に、指定した初期レベルから 0dB までのレベル変 化を、自動的に行わせることを「自動開始」呼びます。本項目は、自動開始を実施するか否かの 選択をするものです。なお、初期レベルに 0dB を設定した場合は、本項目を選択することはでき ません。

自動開始を実施する場合、本ボタンを選択(チェックボックスに×印を付ける)してください。 そして、レベルが増加する時間間隔と増加レベルを指定してください。ここに指定した時間が経 過する毎に、指定した分だけレベル上昇が自動的に行われ、レベルが0dBになるまで、この動作 がくり返されます。

#### 4.2.12 出力停止遷移時間

(1) 意味

実加振のドライブ出力中において、"加振中止"の指示により、ドライブ出力動作を中断させることができます。また、「中断レベル」を越える応答の検出により、ドライブ出力動作が自動的に中断される場合があります。

しかし、ドライブ出力を突然に断ち切ることは危険であり、一定時間をかけて出力レベルをゼ ロに近づける動作を行わせることが適切です。

この出力レベル変化時間のことを「出力停止遷移時間」(または「シャットダウンタイム」) と呼び、本項目はこれを指定するためのものです。

逆に、ドライブ出力動作を開始する場合にも同様のことが言えるので、本システムではドライ ブ出力開始時にも、本項目で指定された時間をかけてフルレベル出力動作に入る動作仕様として います。

#### 4.2.13 レベルスケジューリング

(1) 意味

加振レベルをスケジュール化して試験を行います。

レベルスケジュールでの各スケジュール項目では、加振レベル/加振時間/トレランスを設定します。

加振レベルやテスト時間は、レベルスケジューリングでの設定が優先されます。そのため、レ ベルスケジューリングが定義されると「初期レベル」、「テスト時間」、「自動開始」の各項目 は定義できなくなり、先に定義されていても無効となります。

レベルスケジュールでのテスト時間は、各スケジュール項目の時間の合計となります。 レベルスケジューリングは必要がなければ、定義しなくても構いません。

[ 定義 ] : レベルスケジューリングを定義または修正します。

レベルスケジュールを定義するダイアログボックスが現れます。

[削除]: レベルスケジューリングの定義を削除します。

<各スケジュール項目の定義>

以下のボタンを使用することにより、各スケジュール項目の登録を行います。

レベルスケジュー	ール	? 💌
No. レベル(	dB) 時間	トレランス拡大(dB) OK
1 -20.0 2 -6.0 3 -10.0 4 0.00 5 -151	00 0:10:00 0 1:00:00 00 0:30:00 0 2:00:00 10 0: <b>45</b> :00	6.00 0.00 1.00 0.00 6.00
		合計時間 4:25:00
	-15.00	dB 変更(C)
時間 トレランス拡大	0:45:00	★ jetn(A) → dB

- [追加]:新たなスケジュール項目を登録します。
   レベルや時間等の設定を行い、本ボタンを押下すると、枠内に当該値が表示 され、スケジュール項目が登録されます。
- [変更]: 既に登録されたスケジュール項目の内容を変更します。
   変更対象のスケジュール項目を(マウスなどで)選択し、対象箇所の変更を 行い、本ボタンを押下します。
- [削除]: 既に登録されたスケジュール項目を削除します。
   削除対象のスケジュール項目を(マウスなどで)選択し、本ボタンを押下します。

### 4.2.13.1 レベル

(1) 意味

加振レベルを指定します。

加振レベルは、「PSD 定義」で指定した目標 PSD に対する相対レベルで指定します。

#### 4.2.13.2 時間

(1) 意味

加振時間を指定します。

時間は、「テスト時間」の'時間指定'と同じ方法で指定します。

# 4.2.13.3 トレランス拡大

(1) 意味

トレランスを指定します。

トレランスは、「トレランス定義」で指定したトレランスに対する相対レベルで指定します。

例えば、低い加振レベルではノイズが多くトレランスの幅を広げたい等のことがあれば、 本指定によってトレランスを拡大してください。

なお、0dBを指定すると、トレランスは「トレランス定義」で指定した値と同じ値になります。

### 4.3 多点·多軸制御条件

多点・多軸試験での波形制御に関することを設定します。

多軸・多点 制御条件				? 💌
伝達関数測定加振回数指定	標準値		8 🛛	
☑ クロストーク制御を実施する				++700
制御方針  標準	▼ ドライブ節約	標準	→	1.000e-3
制御速度  標準	→          4         4	).0 %		
🔄 クロストーク制御情報の更新を抑制する				
クロストーク情報平均回数 標準値  ▼ →  8  -  0/loop				
□ 全加振グループをリミット対象とする				

### 4.3.1 伝達関数測定加振回数指定

(1) 意味

伝達関数測定を行うための加振・測定動作の回数(測定データは指定回数分の算術平均を受ける)を指定します。

<本システムの伝達関数測定加振の方法>

1) 最初のホワイトノイズ加振

伝達関数測定のための加振を実施するに先立ち、本システムはまず各加振グループ毎の 制御ループの正常を確認するために、各加振機1台毎に、その加振機が属する「加振グル ープ」毎に規定されている「初期出力電圧」で指定された電圧実効値を持つホワイトノイ ズを出力します。

この時の加振は、ループの異常を確実に調べるため、順に各加振機毎に独立に実施され、 その加振機が属する「加振グループ」に所属する「全入力チャネル」の応答が正常である ことをもって、当該グループの制御ループ正常の判断がなされます。

2) 伝達関数測定加振

伝達関数マトリックス測定のための加振は、各加振グループ毎に定められた「伝達関数 測定出力電圧」で指定されたレベルのドライブ信号が出力されることにより実施されます。 本項目によって、このときの加振回数が規定されます。

またこの時、測定をできるだけ有効なものにする目的で、加振ドライブ信号のスペクト ルに対し制御を行います:

1)のホワイトノイズ加振におけるドライブと応答の情報から、本システムは被制御系の 伝達特性を把握することができます。 そこで、この情報から、全入力チャネルの<u>応答のスペクトルがなるべくフラットになる</u>ようにドライブスペクトルの形を決め、指定された加振レベル値からドライブ信号のレベルを決め、このようにして定められた条件を満たすランダム信号を生成して、加振を実施します。

伝達関数測定時の加振は、できるだけ実働状況に近い状態での伝達関数データを得るため、<u>すべての加振機を同時に加振します</u>。

同時加振による伝達関数測定を成立させるためには、各加振機の加振に用いられるラン ダム信号は、互いに独立な不規則信号でなければなりません。

#### 4.3.2 クロストーク制御

(1) 意味

クロストーク制御を実施するか否かかを指定します。

クロストーク制御は、多軸・多点制御作用の中核をなすものであり、本項目の設定は、通常は いうまでもなく '実施する' でなければなりません。

'実施しない'の設定は、次のような場合にのみ必要となると思われます:

- クロストーク制御を行うと大きなドライブ電圧が必要だが、加振システムの仕様制限によって、その実施が不可能である。
- よって、クロストーク制御の実施をあきらめる。
- ② クロストーク制御の効果を確かめるために、わざとクロストーク制御をしない場合の運転 を試みる。

'実施しない'の設定を行った場合の制御動作は次のように起こります:

- ・加振グループ間のクロストーク制御が実施されない。
- ・同一加振グループに属する出力チャネル間のクロストーク制御は実施される。

(従って、クロストーク制御を完全に止めるには、すべての加振機が各々別々の加振グルー プに所属するように、定義を行ってください。)

### 4.3.3 制御方針

(1) 意味

本項目は、通常は、'標準'で使用してください。

本項目は、通常の手順に従って波形制御を実施したがうまくいかない場合に、ひとつの試みと して、制御演算の方式を一部変更して試してみるために設けられているものであり、次の 3 通 りの制御方針を選択できます;

- 標準 : イコライゼーション実施のために伝達関数をもとに形成される(一般には非因果 性のものであるところの)逆システムのインパルス応答を、時間原点の左右(過去 および未来領域)において均等に扱う標準的な方式です。
   本システムで通常使用されると思われる一般的な波形データに対しては、本方式
  - が用いられるべきです。
- 方式A: 上述した逆システムのインパルス応答を、時間原点の左右においてやや不均等に 扱う方式です(未来側をやや重んじる)。
- 方式B: 上述した逆システムのインパルス応答を、時間原点の左右において不均等に扱う 方式です(未来側を重んじる)。

こうしたことが起きると制御がうまく行くはずはなく、特に本システムの採用している制御方 式では制御ループを回す毎に悪影響が増加することがあり得ます。

しかしながら、これらの方式に適した条件下では、特にトランジェント性の(いわゆるショック試験で用いられるような)波形の制御には、これらの方式の有利さが発揮されることがあります。

### 4.3.4 ドライブ節約

(1) 意味

本項目は、通常は、 '標準'の設定でご使用ください。

測定された伝達関数データHのダイナミックレンジがあまりに大きいと、その逆数として規定 される逆伝達関数Gを求める演算が、Hの小さいところで不安定になり、何らかの「適切化」と 呼ばれる処理をする必要が発生します。

本項目は、この「適切化」処理のパラメータを設定するものです。

詳細は略しますが、適切化には、生成されるドライブ信号を、一般に小さくする働きがありま す(適切化パラメータを大きくするほど、ドライブが小さくなる)。

本項目の名称は、この事実に由来しています。

ただし、本項目の効果は、上述した逆伝達関数Gの演算が不安定になっている事態にのみ有効 であることにご留意ください。

ドライブが節約できるというのは、なにか手品のようなことをして、必要なものを少量で済ま せることができる、という意味ではありません。

いま問題にしているケースでは、ある周波数成分のところでHがあまりにも小さいため、その 逆数としてGを決めるとそれはあまりにも大きな数になってしまう、ということが起こっていま す。しかも、小さなHの測定値の中にはノイズ等による測定誤差が含まれているはずですが、そ の測定誤差の影響が、Hの値としてはわずかなものであっても、その逆数としてのGには極めて 大きな違いとなって現れる、ということが問題です(大きなGは、大きなドライブ電圧信号を生 成します)。

このようなケースでは、逆数演算が不安定になっているというべきであり、そのためにそこか ら得られるドライブも不安定になっていて信頼性がない。いやに大きな値が求まるが、それが本 当なのか疑わしい状況である。それならむしろ逆数演算を安定化させる処理をして(適切化)、 厳密に正確でなくとも妥当な安定解を求めてそれを使おう(この安定解は、一般にもとの解より も小さくなる)という、一種の妥協をするというだけのことです。

伝達関数Hの測定値が安定していてきちんとした解が求まる場合には、「適切化」そのものが 意味を失うのであって、「節約」ができるはずもありません。 ただし「適切化」は、必ずしもHの測定値がまったく信用できないというほどの測定誤差を含 んでいる訳ではないが、正確な逆数解から要求される大きなドライブを出力することができない といった加振システムの定格不足の事態において、一種の「諦めの論理」を整合的に導入するの に用いることも可能です。

すなわち、上述のような場合において、このパラメータの値を比較的大きく与えることによっ て、必要なドライブ電圧を低減させることができます(その代わり、制御精度の方は犠牲にする わけです。この場合、そうしなければ加振することすらできない訳ですから、この「諦め」は有 意義なものと言うべきです)。

選択範囲は次の通りです:

- 制御優先 :上記の意味での適切化は殆ど行わず、数学的な厳密解に近いものを求めます。 解の不安定化ないしはそれに近い状態が生じた場合に、不必要に大きなドライ ブ電圧が算出されることがあり得ます。 このような場合には「制御優先」とはいっても、実際には加振することが不可 能なことが起こり得ますので、この言葉はあくまで形式的なものです。 (適切化パラメータ 0.0002 相当)
- 標準:適度な適切化を実施します。
   安定解が存在する時には、適切化の影響は事実上皆無であり、通常用いる設定
   に適します。
   (適切化パラメータ 0.001 相当)

節約 : やや重い適切化を実施します。
 解の不安定化ないしはそれに近い状態が生じた場合に、数学的な厳密性をやや
 犠牲にして、不必要に大きなドライブ電圧が算出されることを避ける演算を行います。

(適切化パラメータ 0.005 相当)

数値指定 : 適切化パラメータを数値で指定します。 適切化パラメータとしてゼロを指定すると、適切化の処理が一切行われなくな りますが、そのようにすることには一般に特にメリットはありません。

#### 4.3.5 制御速度

(1) 意味

制御速度とは、通常は、制御実施時における被制御系応答変化(もしあったとして)への追従 性を表現する概念です。

なお、本項目は、波形制御に関わる伝達情報(クロストーク制御情報)に関するものですが、 PSD 制御に関わる伝達情報に関する同様の項目は、「基本・制御条件」の「平均化パラメータの ループ加重平均パラメータ E」で設定されています。

本システムは、被制御系の特性変化への追従は、制御ループ更新毎に実施される伝達関数(波 形制御に関わる伝達情報)更新動作により、システムを認識する被制御系の伝達情報データが変 化する事によって、イコライゼーションマトリックスが変化して行く、という動作によって実現 されています。

本項の指定により、繰り返し制御実施時において行う伝達関数データ(波形制御に関わる伝達 情報)の更新処理における新旧データの平均化の際の重みづけが変化します。

平均データSは次式で表わされ、

 $\mathbf{S} = \mathbf{e}_1 \cdot \mathbf{S}^{\mathrm{raw}} + (1 - \mathbf{e}_1) \mathbf{S}$ 

上式における新データ Sraw への重み e1 を調節するわけです。

「速い」の設定では、新データの重みが大きく設定され、この結果、伝達関数測定値の変化が 速やかに制御に反映されるようになります。

数値指定は、新データを評価する重み e_l を百分率で表わした数値によって行います。

例えば、'25%'の指定は、e₁=0.25 の設定を意味します。

各設定値に対応して設定される数値データは下記の通りです:

- 速い: 80%
- 標準: 40%
- 遅い: 20%

#### 4.3.6 クロストーク制御情報更新の抑制

(1) 意味

単一加振グループと複数加振グループのテストにおける制御情報には、PSD 制御のための制御 情報と、波形制御を行う上で必要になるクロストーク制御情報とがあります。

制御ループの更新動作は、定義設定時に「多点・多軸制御条件」の「クロストーク制御情報の 更新を抑制する」項目と、試験実行中に「レベル変更」の「ループ更新抑制」項目にてループの 更新動作を抑制するか否かを設定するものです。

制御ループの更新動作は、設定した内容(「ループ更新抑制」と「クロストーク制御情報更新 の抑制」の設定内容)によって異なります。 また、制御ループの更新動作を試験実施中において変更することも可能です。 これらの関係をまとめると下表のようになります。

定義内容	クロストーク制御青報更新の抑制	抑制しない <i>ぼ フォル</i> ト)		抑制	する
試験	ループ更新の抑制	抑制しない (デフォレト)	抑制する	抑制しない (デフォレト)	抑制する
夫 施 中	PSD 制御情報	0	×	0	×
	波形制御情報	0	×	×	×

○:ループ更新する

×:ループ更新しない

本件の初期設定デフォルトは、'更新する' ですが、本項目は、その初期設定を '更新しない' に設定するためのものです。

本項目の設定を行うと、試験開始直後から波形制御のための伝達関数データ更新の動作が抑制 され、イコライゼーションマトリックスデータが変化せず、本システムは最初に測定した伝達 関数データにのみ基づいて、オープンループの波形制御を行う状態になります。

### 4.3.7 クロストーク情報平均回数

(1) 意味

本システムでは、加振中に伝達関数データ(波形制御のための伝達情報)の更新し、被制御系応答変化への追従を行います。

伝達関数データの更新動作は、指定されたフレーム分のスペクトル分析がなされ、その平均値 として、ドライブデータと応答データのクロススペクトルが算出され、これらのデータを用いて 新しい伝達関数データを計算します。

本項では、上記平均化処理の回数を指定します。すなわち、本項で指定した平均回数に等しいフレーム数分のデータを使用して平均化処理を行い、伝達関数の更新動作を行います。

本項目は、波形制御に関わる伝達情報(クロストーク制御情報)の更新に関するものですが、 PSD 制御に関わる伝達情報にの更新に関する同様の項目は、「基本・制御条件」の「平均化パラ メータのループあたり平均回数 M」で設定します。

### 4.3.8 全加振グループをリミット対象とする

(1) 意味

加振グループが複数ある場合のリミット制御では、リミット制御の対象となっている入力チャ ネルに対して、その入力チャネルが所属していない他の加振グループからの影響が大きい場合は、 所属している加振グループに対してのみにリミット処理を行うだけでは、十分なリミット制御の 効果がないかもしれません。

本項目は、「リミット制御の対象となっている入力チャネルに対するリミット処理を、所属す る加振グループも含めた全ての加振グループに対して行うかどうか」を指定するものです。

本項目を選択した場合は、リミット制御を実施する場合、全ての加振グループの目標 PSD に対 してリミット処理が施されます。従って、リミット制御が実施された場合、リミット制御の対象 となっている入力チャネルが所属している加振グループ以外の制御応答や入力チャネルの応答に も影響が出てきます。

本項目を選択しない場合は、リミット処理は、リミット制御の対象となっている入力チャネル が所属している加振グループにのみに実施されます。従って、リミット制御が実施された場合、 リミット制御の対象となっている入力チャネルが所属している加振グループ以外の制御応答や入 力チャネルの応答には影響がありません。

### 4.4 加振システム設定

制御の加振・出力系に関することを設定します。

#### 4.4.1 概要

(1) 意味

本システムの加振系形成に関わるパラメーター式を総称して「加振グループ」と呼んでいます。 テスト定義により構築される制御系の加振・出力系は、この「加振グループ」の定義内容によ って、確定されます。

加振グループが複数ある場合は、テストにおいて、どの「加振グループ」を使用するのかを宣 言しなければなりません。その宣言を行うのが、本項目です。

「加振グループ配置」定義の中核は、本テストにおいて使用する「加振グループ」を、順に宣 言することです。

使用し得る「加振グループ」は、本テストが参照する「加振システム情報」の中で定義され、 すでに確定しています。

そして、「加振グループ」が決まれば、使用される加振機の種別が確定し、従ってその定格値 等が確定します。

一方、本システムは、それらの加振機1個々にドライブ信号を与えねばなりませんが、個々の 加振機と「出力チャネル」との対応関係は、やはり、参照する「加振システム情報」の中で定義 され、すでに確定しています。

そして、同じ定義の中で、各「出力チャネル」が属する「加振グループ」が指定されているの でしたから、使用される「加振グループ」が確定すれば、加振・出力系のすべてが確定すること になります。

例えば、次のような具合にです:

加振グループA:出力チャネル OUTPUT1⇔加振機A1

: 出力チャネル OUTPUT2⇔加振機A 2

: 出力チャネル OUTPUT3⇔加振機A3

加振グループB:出力チャネル OUTPUT4⇔加振機B1

: 出力チャネル OUTPUT5⇔加振機 B 2

加振グループC:出力チャネル OUTPUT6⇔加振機C1 :出力チャネル OUTPUT7⇔加振機C2

このようにして、使用する「加振グループ」を設定し、併せてそのグループに関するいくつかの 指定事項を設定すれば、加振グループの定義は完了します。

### 4.4.2 加振グループ配置

振グループ配置			? 🔀
加振グループ	初期出力電圧(mV)	チャンネル数	変更( <u>C</u> ) 削除( <u>D</u> )
追加可能加振グルー 加振グループ Group 1 Group 2	-ブ チャンネル数 1 1		

(1) 意味

「加振グループ配置」の定義用ウィンドウにおいて、追加可能加振グループで表示されている 加振グループ名を選択し、次の各プッシュボタンを使うことにより、使用する「加振グルー プ」の宣言を行います。

なお、、加振システム構成が、「単一グループ」の場合に定義できる、加振グループは1つだ けです。

[追加]:新しい「加振グループ」の宣言を行います。

[変更]: 宣言済みの「加振グループ」の定義内容の変更を行います。

[ 削除 ] : 宣言済みの「加振グループ」を削除します。

[追加]または[変更]ボタンを押下すると、加振システム設定の定義画面が表示されますの で、各加振グループ毎に必要な定義項目を設定します。

なお、本配置の順序により、「出力チャネル」に関わるデータの<u>グラフ表示の順序</u>が決まりま す。

すなわち、グラフ表示の順序は、宣言されている「加振グループ」の順に、そのグループに属 する「出力チャネル」データを表示する、というように決まります。

また、同一グループ内での「出力チャネル」の順序は、「加振システム情報」中で「出力チャ ネル」が定義されている順序によって決まります。

# 4.4.3 各加振グループ毎の定義項目

各加振グループ毎に下図に示す加神グループ情報の設定を行います。

加振グループ情報[X軸]
初期出力電圧 10.0 🚔 mV rms OK キャンセル
伝達関数測定電圧 100.0 🚔 mV rms
<ul> <li>ホワイトノイズで加振する</li> <li>クリッピング</li> </ul>
ウレストファクタによるクリッピング
許容電圧 加振グループの定格値 ▼ 10000.0 ਦ mV
許容クリッピング比率 標準値 マ 2.0 😓 σ
HPF 自動設定 ▼

#### 4.4.3.1 初期出力電圧

(1) 意味

「初期出力電圧」とは、制御実施時に加振機に対して最初に出力する電圧のことを指します。 ドライブが停止している状態から加振する場合は、常にこのドライブ電圧から制御を始めます。 設定値は、電圧値を[mV]単位で rms 値によって設定します。初期出力電圧を指定しない場合は、 加振システム情報に登録された、初期出力電圧値(Vrms) が自動的に設定されます。

注)初期出力電圧は、ご使用の加振機に適した値を設定してください。

#### 4.4.3.2 伝達関数測定電圧

(1) 意味

初期のループチェックに引続いて、伝達関数測定のための加振を実施する際、各加振機に与 えるドライブ信号の電圧レベルを(rms値で)、「加振グループ」毎に、指定します。

本システムでは、伝達関数測定加振時には一定の加振制御が実施され、全入力チャネルでの 応答の周波数成分が(もし複数ある場合には、平均的な意味で)ほぼフラットな特性を持つよ うにイコライズされたランダム波信号がドライブ出力されますが、本項はそのドライブ電圧波 形のレベルを指定するものです。

応答の周波数成分ではなくドライブ出力の周波数成分をフラットな特性に設定する場合は、 「ホワイトノイズで加振する」にチェックを入れてください。

本システムでは入力系の形成法がきわめてフレキシブルであり、各「入力チャネル」はある 特定の加振機に対応づけられていません(加振機にでなく、「加振グループ」に対応づけられ ています)。

### 4.4.3.3 クリッピング

(1) 意味

出力チャネルで行う「クリッピング」の実施の条件を設定します。

クリッピング指定は、下記2種の方法のいずれかで行います。

・クレストファクタによるクリッピング

・電圧値によるクリッピング

本システムでは、電圧値によるクリッピングは必ず指定しなければなりませんが、クレスト ファクタによるクリッピングは、必要がなければ、指定しなくてもかまいません。本システム では、クレストファクタによるクリッピングは、「使用しない」のが、通常の使い方です。

#### 4.4.3.3.1 クレストファクタによるクリッピング

(1) 意味

「クレストファクタによるクリッピング」の実施・非実施を設定します。

「クレストファクタによるクリッピング」を実施する場合は、出力信号の標準偏差 σ に 対する相対比でクリッピングレベルを指定します。

#### 4.4.3.3.2 許容電圧

(1) 意味

システムが出力する最大の電圧値を設定します。

出力チャネルが、この許容電圧値を上回る電圧信号を出力しようとした場合、ドライブ 信号にクリッピング処理を施します。従って、本項目で指定した電圧レベルは、電圧値に よるクリッピングレベルと同じ意味になります。

#### 4.4.3.3.3 許容クリッピング比率

(1) 意味

本システムでは、電圧値によるクリッピングのみによる設定を標準としています。 電圧値によるクリッピングが行われる場合、許容電圧に近いレベルの出力時には、殆ど の信号がクリッピングを受けてしまいます。クリッピング処理の実施はドライブ信号スペ クトルの変形を意味しますから、クリッピング処理はスペクトル制御性能の低下を招くこ とになります。

安全のため、本システムでは、クリッピングを行った出力信号のクレストファクタが、 ある一定の値より小さくなったときに、運転を停止するという動作を行います。 アボート電圧[mV_{rms}]=出力電圧制限値[mV₀₋₀]÷許容クリッピング比率で規定されます。

### 4.4.3.4 HPF (ハイパスフィルタ)

(1) 意味

本システムの特徴的な機能のひとつである「大振幅発生回避機能」を実現するための具体 的機構である、ドライブ信号出力回路へのハイパスフィルタの挿入・非挿入を指定するため の項目です。

ハイパスフィルタの使用・不使用、使用の場合のカットオフ周波数 fc の設定について、次の選択が可能です。

・使用しない

ハイパスフィルタを使用しない、という選択を意味します。

・自動設定

ハイパスフィルタを使用し、そのカットオフ周波数 fc の設定を本システムが自動判断 して実施する、という選択を意味します。

・数値設定

ハイパスフィルタを使用し、fc を任意に設定する、ことを意味します。

<選択基準>

通常は、本システムのデフォルト値である'自動設定'の設定にしていた頂くのが良い と思われます。

カットオフ周波数 fc の選択基準としては、制御目標最低周波数(目標 PSD の低周波側の端点の周波数) f edgeL と周波数分解能 Δf との関係が、およそ

 $fc = f_edgeL + 0.5 \Delta f$  程度

となるようにするのが適切です。

ただし、f_edgeL>5Δf になる場合は、もともとフィルタの使用は不要と考えられます。 実装されているハイパスフィルタは2次特性のものであり、fc についてあまり厳密に考 える必要はありません(が場合によっては、決定的に重要な変位低減効果が得られます)。

<必要速度・変位算定値への影響>

本項目設定値は、目標スペクトルの加速度 rms 値計算と一緒に実施される速度・変位の rms 値算定値に影響を与えます。

従って、変位要求が大きすぎてテスト実施が危ぶまれる等の深刻なケースには、まず fc の設定を変えてみて計算値を検討してみる等のことをお勧めします。

一方、上記の速度・変位 rms 値の算定には、一定の仮定が置かれていますので、算定値 は本来絶対の意味を持ち得るものではないことをあらかじめご了承願います。

<fc 設定値の表示>

カットオフ周波数を '自動設定'を指定した場合は、目標 PSD の定義を完了した後に表示されます。

# 4.5 目標 PSD

本項目は制御目標を指定するものであり、これによりテストパターンが決まります。

# 4.5.1 目標 PSD 配置

(1) 意味

本システムでは、加振グループ毎に目標 PSD を指定します。

加振システム構成を '複数グループ'に指定したテスト定義では、各々の「加振グループ」に どのような「目標 PSD」を配置するのかを宣言しなければなりません。 その配置の宣言を行うのが本項目です。

「目標 PSD 配置」定義の中核は、本テストにおいて使用する「目標 PSD」を、順に宣言することです。

目標PSD配置				? 💌
				0K キャンセル
グループ名	PSD種別	周波数範囲	rms値	
Group1 Group2 Group3	(未定素) (未定義) (未定義)			定義(1)… ゼロ目標(2)

PSD 定義前の画面



PSD 定義後の画面

<目標 PSD の定義>

「目標 PSD 配置」の定義用ウィンドウにおいて、表示されている加振グループ名を選択し、次の各プッシュボタンを使うことにより、使用する「加振グループ」の宣言を行います。

使用し得る「加振グループ」は、「加振グループ配置」で、すでに確定しています。

[ 定義 ] : 新しい「目標 PSD」の宣言を行います。

[修正] : 定義済みの「目標 PSD」の定義内容の修正を行います。

[ ゼロ目標 ] : 「目標 PSD」を「ゼロ目標」に設定します。(後述参照)

[定義]または[修正]ボタンを押下すると、目標 PSD 定義ウィンドウが表示されますので、 各加振グループ毎に、目標 PSD を設定します。

<ゼロ目標>

多軸加振システムのひとつの重要な使用例として、正確な一方向加振を実現するために他の加 振軸の加振機をクロストーク振動を押さえるために使用するという場合があります。

この場合、目標 PSD は本来一つだけであり、他の加振軸に対応する応答点の目標 PSD は、「ゼロ目標」であることになります。

このような場合に、わざわざゼロデータからなる「目標 PSD」を作って、それを「目標 PSD」 として使用するのは面倒です。

そこで、このような場合には、当該グループの本項目指定時に、次のプッシュのボタンを押下 すれば、自動的にそのグループの目標 PSD として「ゼロ」のデータが設定される仕様になってい ます。

なお、「ゼロ目標」を指定した場合には、トレランスと rms 値による制御応答のチェックは実施されません。

また、「ゼロ目標」を指定した加振グループに所属する入力チャネルに対しては、リミット制 御は実施できません。

<定義した目標 PSD の表示>

目標 PSD を定義した加振グループを選択すると、定義した目標 PSD が表示されます。 なお、グループの目標 PSD を「ゼロ目標」にした場合は、グラフは表示されません。

### 4.5.2 PSD 定義

目標PSD			<b>X</b>
1.0 (m/s ² ) ² /Hz 0.10 1.000e-2 1.000e-3 1.000e-4 1.000e-5 10.0 Hz	100.0		加速度 10.0068 m/s ² rms 速度 7.037e-3 m/s rms 変位 2.840e-2 mm rms PSD定義種別 ④ ブレイクボイント ① 実測PSD ② 実測波形 目標定義(P トレランス定義(T)
	中断チェック	警告チェック	参照
	V	dB	登録
相対ト限レベル	×	dB	ОК
絶対レベル 🔳	× V	m/s² rms	キャンセル

(1) 意味

PSD の形状を指定します。

本システムで PSD データを定義する方法には、次の種類があります。

- ① ブレイクポイント PSD 定義
- 実測 PSD 定義
- ③ 実測波形定義

PSD 定義種別で「ブレイクポイント」か「実測 PSD」か「実測波形」をを選択します。

<ブレイクポイント PSD 定義>

ブレイクポイントによって、PSD データを定義します。

<実測 PSD 定義>

所定のフォーマットで記述された CSV 形式で保存された PSD データのデータファイルをそのま ま、または必要に応じて適切に編集を加えたデータを、目標 PSD データとして用います。

<実測波形定義>

所定のフォーマットで記述された CSV 形式で保存された波形データのデータファイルをそのま ま、または必要に応じて適切に編集を加えたデータから PSD データを算出し、それらのデータを 必要に応じて編集して、目標 PSD データとして用います。

<PSD データの rms 値>

PSD データが定義されると、定義された PSD データの rms 値が画面に表示されます。(制御単 位が加速度の場合は、速度、変位の rms 値も表示されます。) 本定義画面で表示される PSD データの rms 値は、「基本・制御条件」で指定されている制御ライン ( $\Delta f$ ) に依存する計算値です。

制御システムが制御量として認識する rms 値は、本定義画面で表示される制御ラインに依存する rms 値です。そして、システムの定格チェックも、この rms 値で行われます。

しかし、これらの計算値は、ブレイクポイント定義画面で表示される定義データから算出される「理論値」(これはΔf依存性を持たない)とは幾分異なる可能性があります。

また、実測 PSD 定義画面で表示される rms 値は、使用する PSD データファイルの $\Delta f$ に依存する計算値であり、両者の $\Delta f$ が一致しない場合は rms 値も一致しません。

### 4.5.2.1 ブレイクポイント PSD 定義

### 4.5.2.1.1 概要

PSD を周波数とレベル(または傾き)のペアで定義していきます。

#### <例題>

10[Hz]~100[Hz] : 10[Hz]、0.001[(m/s²)²/Hz] を起点として、傾き [6dB/oct]を 持 つスペクトル

100[Hz]~1000[Hz] : レベル一定(傾き [0dB/oct])のスペクトル

注)プロファイルのグラフは、制御単位を縦軸に取ります。

ブレイクポイントPSD定義	? <b>*</b>
周波数(Hz) レベル / 傾き 10.00 1.000e-3 (m/s2)2/H 100.00 6.0 dB/octave 1000.00 0.0 dB/octave	z 1.0 (m/s ² ) ² /Hz 0.10 1.000e-2 1.000e-3 1.000e-4 1.000e-4 10.0 Hz 100.0 100.0
傾きの単位 dB/octave  マ  削除(I ブレイクポイント	)) 9.5853 m/s² rms rms値変更(R)
周波数 1000.00 美 ⊢ ○レベル ④ 傾き 0.0 美	lz 追加(A) dB/octave 変更(C) OK キャンセル

ブレイクポイント PSD データ定義は、周波数分解能 Δf に依存しません。もし、定義 したブレイクポイント PSD データに、Δf で割り切れない周波数成分がある場合、定義 した PSD データの隣り合う周波数の PSD のレベルを直線で結び、この直線上の制御ラ インの周波数におけるレベルを計算し、それらの値を各制御ラインの PSD データとしま す。

ただし、定義する PSD データの周波数成分は、少なくとも周波数分解能 Δf と周波数 レンジ fmax の間の成分でなければなりません。

また、Δfとfmaxの間に最低2ライン分のデータが必要です。

以下のボタンを使用することにより、ブレイクポイント(以後、B.P. と略記)データの登録を行います。

なお、、B.P.データは、最大256まで登録することができます。

[ 追加 ] : 新たな B.P.データを登録します。

B.P.周波数及びレベルもしくは傾斜値を入力し、本ボタンを押下すると、枠内に 当該値が表示され、B.P.データとして登録されたことになります。

なお、、既に登録されている B.P.周波数と同一もしくは近似周波数のデータを追 加登録することはできません。

[ 変更 ] : 既に登録された B.P.データの内容を変更します。

変更対象の B.P.データ行を(マウスなどで)選択し、対象箇所の変更を行い、本ボ タンを押下します。

[ 削除 ] : 既に登録された B.P.データを削除します。 削除対象の B.P.データ行を(マウスなどで)選択し、本ボタンを押下します。

### 4.5.2.1.2 周波数

(1) 意味

B.P.周波数の入力を行います。

なお、、既に登録済みの B.P.周波数と同一もしくは近似の周波数のデータを追加登録 することはできません。

#### 4.5.2.1.3 レベル

(1) 意味

B.P.データを登録する際、周波数データと対になるレベルデータを PSD 値の単位にて 入力します。

[レベル] ボタンを選択すると、「レベル」の入力が可能になりますから、PSD 値を 入力します。

PSD 値は、'単位²/Hz' で表現しますが、その中の'単位'は、「基本・制御条件」で指 定した制御単位になります。

#### 4.5.2.1.4 傾き

(1) 意味

B.P.データを登録する際、周波数データと対になる傾斜値データを入力します。

[傾き] ボタンを選択すると、「傾き」の入力が可能になります。

「傾き」の単位は2種類あり、'dB/octave', 'dB/decade' から選択しますが、どちらか一 方のみを使用することができます。

### 4.5.2.1.5 rms 値変更

(1) 意味

上述したスペクトルの定義を完了すると、そのrms 値の換算が行われます。

本機能は、スペクトルの相似変換すなわち、現在定義されているスペクトルの形は変 えないでレベルのみを変更し、希望する rms 値を持つようなデータに変換するためのも のです。

[rms 値変更..] ボタンを押下すると、rms 変更ダイアログボックスが表示されます。

rms 値変更 ? 🔀
現 rms 値 9 - 5853 m/s² rms
●新rms值 ◎比率
10.0 m/s² rms
OK キャンセル

変更方法は、以下の2つがあります。

・新 rms 値

変更後の rms 値を絶対値によって指定します。

・比率

変更後のrms 値を変更後の相対値によって指定します。

#### 4.5.2.2 実測 PSD 定義

### 4.5.2.2.1 概要



実測の PSD データを利用して PSD を定義します。

使用する PSD データは、特定のフォーマットで記述されたCSVファイルでなければ なりません。このフォーマットについては、"4.5.2.2.4 CSV データファイル"を参照し てください。

なお、使用する PSD データファイルの周波数分解能Δfが、テスト定義のΔfと一致し ていなくてもかまいません。もし、読み込んだ PSD データに、Δfで割り切れない周波 数成分がある場合、定義した PSD データの隣り合う周波数の PSD のレベルを直線で結 び、この直線上の制御ラインの周波数におけるレベルを計算し、それらの値を各制御ラ インの PSD データとします。

ただし、定義する PSD データの周波数成分は、少なくともテスト定義の周波数分解能 Δf と周波数レンジ f_{max}の間になければなりません。これを満足しないデータの場合は、 条件を満足するようにデータを加工する必要があります。

また、Δfとfmaxの間に最低2ライン分のデータが必要です。

<PSD データファイルの選択>

以下のボタンを使用することにより、PSD データファイルを選択します。

[CSV ファイル読み込み]: PSD データファイルを読み込みます。

#### <データ加工>

以下のボタンを使用することにより、読み込んだ PSD データに対して加工を施します。 [LPF設定] : ローパスフィルタを施したり、データを切り詰めます。

- [HPF設定] :ハイパスフィルタを施したり、データを切り詰めます。
- [レベル変更] :指定した周波数帯域のレベルを変更します。
- [rms 値変更] : rms 値を変更します。
- [直前の状態に戻す]:加工したデータを1つ前の状態に戻します。

# 4.5.2.2.2 PSD データファイルの読み込み

(1) 意味

PSD データとして使用する「実測 PSD データファイル」を選択します。

実測 PSD プロファイル定義ダイアログにおいて、[CSV ファイル読み込み]ボタンを選択すると、ファイル読込み画面が表示されます。

כ	アイル読	ፚታ		? 💌
	列番号	項目名	割当て	PSD単位 (m/sユ)ユ/Hz
				<ul> <li>割当て</li> <li>○ 周波数</li> <li>○ レベル</li> <li>○ 使用しない</li> </ul>
				<ul><li>ファイル選択</li><li>OK キャンセル</li></ul>

ファイル読込み画面でファイル選択ボタンを押すと、CSV ファイルを選択するダイア ログボックスが表示されます。

🕵 CSVファイル読み	り込み			×	
ファイルの場所(1):	F≠1X/		G 🏚 📂 🎞 <del>-</del>		
<b>S</b>	名前 国)DATA01.csv	^	更新日時 2013/07/18 10:51	種類 Microsoft Offi	
最近表示した場所	TestSweep2.csv		2013/07/17 14:09	Microsoft Offi	
デスクトップ					
うイブラリ					
1761-9-	•	< III >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			
	ファイル名( <u>N</u> ):	DATA01csv		開(())	
ネットワーク	ファイルの種類(工):	テキストファイル(*.csv;*.txt)	<b>•</b>	キャンセル	
	区切り文字				
	▼カンマ [	ಶಸ 🛛 ಕಾದರಿ 🗖 ス	ペース		
	列数	3			

対象とするデータファイルを選択が完了すると、次にデータファイルに記述されてい るデータの中から定義で使用するデータを選択します。

ファイル読込み	? 🔀
列番号 項目名 割当て <u>FreqLH2</u> 局波数 2 CH1[(m/s2)2/H2] レベル	PSD単位 (m/s²)²/Hz ▼ 割当て
	◎ 周波数 ○ レベル ○ 使用しない
	ファイル選択 OK キャンセル

<PSD 単位の選択>

データファイルのレベルの単位を選択します。

<周波数データの割り当て>

データファイルのデータの中から周波数データに該当する列データを選択します。 <レベルデータの選択>

データファイルのデータの中からレベルデータに該当する列データを選択します。

### 4.5.2.2.3 データ加工

(1) 意味

PSD データが確定すると、選択した実測 PSD データが表示され、データ加工の各ボタンが有効になります。実行したいボタンを選択し、必要なデータ加工を行います。

#### 4.5.2.2.3.1 LPF(ローパスフィルタ)設定

(1) 意味

PSD データにローパスフィルタを施したり、不要な帯域のデータを切り取ってデ ータを切り詰めたりします。

[ LPF設定 ] ボタンを押下すると、LPF設定ダイアログボックスが表示されます。

LPF 設定	? 💌
カットオフ周波数	100.0 🚔 Hz
◎ 切り詰め	
◎ スロープ指定	5.0 🚔 dB/octave
	OK キャンセル

設定項目は以下の通りです。

・カットオフ周波数

フィルタ処理を行う際のカットオフ周波数を入力します。

·処理内容

LPFの処理内容を次の中から選択します。

・切り詰め

カットオフ周波数より大きい成分のデータを切り取ります。

PSD データに、制御周波数レンジ  $f_{max}$  より大きい周波数成分がある場合 は、本機能によって  $f_{max}$  以上のデータを削除し、PSD データを切り詰め なければいけません。

・スロープ設定

ローパスフィルタ処理を、指定したスロープで施します。

スロープの単位は 'dB/octave' です。

### 4.5.2.2.3.2 HPF(ハイパスフィルタ)設定

#### (1) 意味

PSD データにハイパスフィルタを施したり、不要な帯域のデータを切り取ってデ ータを切り詰めたりします。

[HPF設定]ボタンを押下すると、HPF設定ダイアログボックスが表示されます。

HPF 設定	? 💌
カットオフ周波数	1000.0 🚔 Hz
◎ 切り詰め	
◎ スロープ指定	5.0 🚔 dB/octave
	OK キャンセル

設定項目の内容や意味は、LPFと全く同じです。

・カットオフ周波数

フィルタ処理を行う際のカットオフ周波数を入力します。

・処理内容

HPFの処理内容を次の中から選択します。

・切り詰め

カットオフ周波数より小さい成分のデータを切り取ります。

PSD データに、制御周波数分解能 $\Delta f$ より小さい周波数成分がある場合 は、本機能によって $\Delta f$ 以下のデータを削除し、PSD データを切り詰めな ければいけません。

・スロープ設定

ハイパスフィルタ処理を、指定したスロープで施します。 スロープの単位は 'dB/octave' です。

#### 4.5.2.2.3.3 レベル変更

(1) 意味

指定した周波数範囲の PSD データのレベルを変更します。

[レベル変更]ボタンを押下すると、レベル変更ダイアログボックスが表示されます。

レベル変更 ? 王
周波数範囲 100.0 🜪 ~ 1000.0 🐑 Hz
- 変更
○ PSD値 ● 比率
10.00 ਦ dB
スローブ
▼ あり
5.0 🚔 dB/octave

設定項目は以下の通りです。

·周波数範囲

レベル変更を行う周波数範囲を指定します。

なお、、指定できる最小の周波数範囲は、PSD データファイルの周波数分解 能Δfです。1ラインだけのレベルを変更する事はできません。

・レベルの変更方法

変更後の PSD レベルの指定の方法を以下の2つから選択します。

・PSD 値

変更後の PSD レベルを、絶対値によって指定します。

・比率

変更後の PSD レベルを、変更後の相対値によって指定します。

・スロープ

変更方法が '比率' のとき、スロープを設定するか否かを指定します。

スロープを設定した場合、指定した周波数範囲の外側にスロープが設定されます。 スロープの単位は 'dB/octave' です。

#### 4.5.2.2.3.4 rms 値変更

(1) 意味

現在定義されている PSD の形は変えないで、レベルのみを変更し、希望する rms 値を持つようなデータに変換します。

[rms 値変更] ボタンを押下すると、rms 変更ダイアログボックスが表示されます。

rms 値変更 💦 🛃 🔀			
現 rms 値 32.8875 _{m/s² rms} 変更			
● 新 rms 値 ── 比率			
5.0 m/s² rms			
OK キャンセル			

変更後の rms 値の指定の方法は、以下の2つから選択します。

・新 rms 値

変更後のrms 値を、絶対値によって指定します。

・比率

変更後のrms 値を、変更後の相対値によって指定します。

#### 4.5.2.2.4 CSV データファイル

(1) ファイル形式

テキストファイル (MS-DOS形式)

(2) データの記述形式

周波数刻みのデータを、周波数の順に、下記のように記述します;

	1列目	2列目	3 列目		
1 行目	周波数[Hz],	データ名1,	データ名2,	データ名3,	
2 行目	0.0,	*** ***	*** **,	** ** ,	
3 行目	$\Delta$ f,	*** ***	*** **,	** ** ,	
	2 Δ f,	*** ***	*** **,	** ** ,	
	F,	*** ***,	*** **,	** ** ,	

・1行目の文字列データ(データ名)は指定しなくても構いません。

・各データ(列)の順序は、特に規定はありません。

・周波数データは昇順にソートされている必要があります。

(3) データの単位

記述されるデータの単位はデータファイルを選択後に指定します。

#### 4.5.2.3 実測波形定義

### 4.5.2.3.1 概要

実測の波形データを利用して PSD を定義します。



先ず波形データを選択し、必要に応じて波形を編集します。

その波形データから PSD データを算出し、それらのデータをさらに必要に応じて編集して、目標 PSD データとして用います。

使用する波形データは、特定のフォーマットで記述されたCSVファイルでなければ なりません。このフォーマットについては、 "4.5.2.3.4 CSV データファイル"を参照し てください。

<データ加工>

PSD データに対して加工を施します。

詳しくは"4.5.2.2 実測 PSD 定義"を参照してください。

<戻る>

波形データの選択 及び 加工画面に戻ります。

波形データを変更後、本画面に戻ると既に実施されていたデータの加工は破棄されま す。
# 4.5.2.3.2 波形データの読み込み

(1) 意味

PSD データの基となる「実測波形データファイル」を選択し、加工します。 先ず最初に CSV ファイルを選択するダイアログボックスが表示されます。

🏔 CSVファイル読み	+込み			<b>—</b>
ファイルの場所(]):	🏭 csv	•	G 🦻 📂 🖽 -	
(Pa)	名前	*	更新日時	種類
	gVsTimeXlong.c	SV	2017/09/13 14:59	Microsoft Exo
・ 厳止衣示した場所	LoadData.csv		2007/11/28 10:49	Microsoft Exc
	LongWave.csv		2017/05/12 10:21	Microsoft Exc
デスクトップ	🔊 Sample.csv		2016/05/19 16:10	Microsoft Exo
<b>ごう</b> ライブラリ				
M.				
コンピューター				
	•	III		Þ
ネットワーク	ファイル名( <u>N</u> ):			開((0)
	ファイルの種類(工):	テキストファイル(*csv;*txt)	<b>-</b>	キャンセル
	区切り文字			
	▼カンマ □:	タブ 🛛 セミコロン 🔲 ス	ペース	
	列数			

対象とするデータファイルを選択が完了すると、次にデータファイルに記述されてい るデータの中から定義で使用するデータを選択します。

列番号	項目名	割当て	ファイル選択(」)	
1 2 3	Data No. 時間(msec) X方向 V方向		レベル単位 m/s ²	
5	2方向	レベル	サンプリング周波数	1000.0 🚔 ዞ
			時間データよりサンプ 単位	リング周波数を算出 msec
			割当て	
			◎ 時間	◎ レベル

<ファイル選択>

CSV ファイルを選択するダイアログボックスを表示して、波形データファイルを選択 し直します。

<レベル単位の選択>

データファイルのレベルの単位を選択します。

<サンプリング周波数>

データファイルのサンプリング周波数を入力します。

- また、時間データより自動算出する場合はここに表示されます。(変更不可)
- <時間データよりサンプリング周波数を算出>

データファイルのデータの中から時間データに該当する列データを選択することによ り、サンプリング周波数を自動的に算出します。

また、時間データの単位を選択します。

<レベルデータの割当て>

データファイルのデータの中からレベルデータに該当する列データを選択します。

<時間データの割当て>

サンプリング周波数を自動的に算出する場合に、データファイルのデータの中から時 間データに該当する列データを選択します。

時間データは一定の刻みで並んでいる必要があります。

詳しくは "4.5.2.3.4 CSV データファイル"を参照してください。

波形データが確定すると、選択した実測波形データが表示されます。

50 n m/s2	_ ファイルの読み込み(E)…
50.0 W S ² 40.0 20.0 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0	表示データ選択 ④ 波形表示 ⑦ PSD表示 800 👻
<b>編集機能</b> 一 元に戻す( <u>U)</u>	▶ ▶欺変更( <u>P)</u>
フィルタ処理(E)     対値間ば算(C)     データポイン       現在のサンブリング周波数     1000.00     Hz     現在のデータポイント数     45708	points

<波形データファイルの選択>

以下のボタンを使用することにより、波形データファイルを選択します。

[ファイルの読み込み]:波形データファイルを読み込みます。

#### <表示データ選択>

グラフ表示するデータを以下から選択します。

・波形表示

データを波形グラフで表示します。

・PSD 表示

データを PSD グラフで表示します。また表示するライン数を選択します。

#### <データ編集機能>

以下のボタンを使用することにより、読み込んだ波形データに対して編集を施します。

- [元に戻す]: 編集したデータを1つ前の状態に戻します。
- [フィルタ処理] :フィルタ処理を施します。
- [ 始端、終端処理 ] :エッジ処理や窓処理、クリッピング処理を施します。
- [数値間演算]:数値間演算を施します。
- [データポイント数変更]:データポイント数を変更します。

#### 4.5.2.3.3 波形データ編集

(1) 意味

波形データが確定すると、選択した実測波形データが表示され、編集機能の各ボタン が有効になります。実行したいボタンを選択し、必要なデータ編集を行います。

#### 4.5.2.3.3.1 フィルタ処理

(1) 意味

波形データに対して、フィルタ処理を行います。

「フィルタ処理」ボタンを押すと、フィルタ処理定義ダイアログボックスが表示されます。

フィルタ処理			? 💌
▼□−バスフィルタ(L)		- 🔽 ハイバスフィル:	\$( <u>H</u> )
◎ バタワース		◎ バタワース	
◎ 直線位相		◉ 直線位相	
○ TRUNCATE		C TRUNCATE	
周波数分解能 1600	<b>•</b>	周波数分解能	1600 👻
カットオフ周波数	💼 Hz	カットオフ周波数	Hz
フィルタの傾き 16	0.0 🚔 dB/decade	フィルタの傾き	160.0 🚔 dB/decade
	OK	キャンセル	

設定項目は以下の通りです。

<フィルタ種別>

フィルタの種別を指定します。

・ローパスフィルタ

低域通過型のフィルタです。

・ハイパスフィルタ

高域通過型のフィルタです。

<フィルタ特性>

フィルタ特性を指定します。通常は、直線位相をご使用ください。

・バタワース

N 次バタワース(Butterworth)フィルタであり、その次数 N は次項以降で設定します。

·直線位相

入力信号に対して非線形的な位相変化を一切与えないフィルタであり、本 システムでは全ての周波数成分に位相変化を全く与えず、減衰域における傾 斜を指定できる仕様を採用しています。

• TRUNCATE

指定したカットオフ周波数 fc を境にしてフィルタ処理対象周波数領域の 特性をゼロに切り詰めます。

なお、、位相特性については前項「直線位相」フィルタと同一です。

#### <周波数分解能>

本システムでは、波形データのフィルタ処理を施すにあたり、FFT によるフーリ エ変換および逆変換を実施しますが、その際の周波数分解能を指定します。

よって、本項が確定すると、次項で指定するカットオフ周波数 fc の入力下限値 が決まることにもなります。

<カットオフ周波数>

フィルタ処理を施す際のカットオフ周波数 fc を入力します。

本項の入力下限値 fc_min は、フィルタ処理対象波形データのサンプリング周波数 fs および前項の周波数分解能 L により以下のように決まります。

 $fc_{min} = \Delta f [Hz]$   $\Delta f = fmax/L$ , fmax = fs/2.56

<フィルタの次数>

本項は、ファイル特性 が'バタワース'の場合のみ入力する項目であり、フィル タの遮断特性を表わす次数 N を入力します。

<フィルタの傾き>

本項は、フィルタ特性が「直線位相」の場合のみ入力する項目であり、フィル タの次数に相当する遮断特性の傾き S[dB/decade] を入力します。

本項が確定すると、フィルタ処理対象領域において、以下の式に則ったフィルタ 処理が施されます。

 $A'(f) \begin{cases} =A(f) & \Delta f \le f < fc \\ =A(f)/(f/fc)^{S/20} & fc \le f \le f \text{ max} \\ & \text{A(f)} & \text{Kin if it } \end{cases}$ 

# 4.5.2.3.3.2 始端、終端処理

(1) 意味

波形データに対して、エッジ処理や窓処理、クリッピング処理を施します。

エッジ処理とは始端と終端を滑らかにゼロにする処理で、半周期ハニング窓が用いられます。

[始端、終端処理]ボタンを押下すると、始端、終端処理定義ダイアログボックスが表示されます。

エッジ	エッジ処理・窓処理・クリッピング							
- 処理	里種別	窓種別	対象領域指定(0)					
۲	エッジ処理(E)	○ 左側半周期(L)	OK					
0	ハニング窓(日)	○右側半周期( <u>R</u> )	キャンセル					
0	逆ハニング窓(I)							
$\odot$	半周期ハニング窓( <u>A</u> )							
$\odot$	クリッピング( <u>C</u> )							
エッ ピー	ジ処理幅(前後) -クレベル	ins ▲ ms						

設定項目は以下の通りです。

<処理種別>

処理する種別を指定します。

・エッジ処理

波形の始端と終端に半周期ハニング窓処理を施します。

半周期ハニング窓処理についての詳細は下記を参照してください。

・ハニング窓

指定された領域に、指定されたピーク値を持つハニング関数を発生させ、

これを該当領域の波形データに掛け合わせます。

・逆ハニング窓

指定された領域に、指定されたピーク値を持つ逆ハニング関数を発生させ、 これを該当領域の波形データに掛け合わせます。

・半周期ハニング窓

指定された領域に、指定されたピーク値を持つ半周期のハニング関数を発 生させ、指定した方向から、これを該当領域の波形データに掛け合わせま す。

・クリッピング

指定された領域の波形データに対して、指定された値でクリッピング処理 を施します。

クリッピングレベルが正の場合、クリッピングレベル以上のデータはク リッピングレベル値に置き換えられます。

負の値の場合、クリッピングレベル以下のデータはクリッピングレベル に置き換えられます。

なお、、クリッピングレベルとの境目を滑らかにするためのスムージン グ処理を施すこともできます。 <窓種別>

前項の処理種別を「半周期ハニング窓」の場合のみ本項の入力が可能となり、以 下の2種から選択します。

・左側半周期

左側、すなわち、立ち上がり半周期分のハニング関数を発生させ、これを 該当領域の波形データに掛け合わせます。

右側半周期

右側、すなわち、立ち下がり半周期分のハニング関数を発生させ、これを 該当領域の波形データに掛け合わせます。

<エッジ処理(前後)>

エッジ処理の場合、エッジ処理を施す時間 Te を指定します。

始端と終端の時間のデータに対して半周期ハニング窓による窓処理が施されます。 その他の処理の場合、処理を行う範囲を指定します。

通常は波形データの全領域ですが、必要に応じて任意の範囲を指定することがで きます。

<ピークレベル(クリッピングレベル)>

エッジ処理やハニング処理の場合、ハニング関数のピーク値を指定します。

単位は無名値であるためありません。

通常は"1.0"にしてください。

クリッピング処理の場合は、クリッピング値を指定します。 単位は対象波形データの単位となります。

# 4.5.2.3.3.3 数値間演算

(1) 意味

読み込まれた波形データに数値間演算を施します。

[数値間演算]ボタンを押すと、波形データと数値間の演算ダイアログボック スが表示されます。

記形データと数値間の演算	? ×
演算種別	刘象領域指定(O)
◎ 加算(A) ③ 乗算(M)  ◎ 置換(R)	ОК
指定方法	キャンセル
<ul> <li>● 領域指定(E)</li> <li>● 位置指定(P)</li> <li></li>     &lt;</ul>	

<処理種別>

波形データと数値間で行う演算の種別を指定します。

・加算

現在の波形データに、指定された量の値を一律に加えます。

・乗算

指定した変換倍率分だけ、波形データの値を比例変換します。

·置換

現在の波形データを、指定された値に置き換えます。

<演算值>

演算を行う数値を指定します。

演算種別が'乗算'の場合、無名値となります。

算種別が"加算"、"置換"の場合、その単位は現在の波形データのそれと同じ になります。 <指定方法>

数値演算を行う対象範囲を指定します。

・領域指定

数値演算の対象範囲の指定を、開始点と終了点の2点を指定することにより 行います。

指定方法の"領域指定"をチェックし、[対象領域指定]ボタンを押すと、 下記の画面が表示されますので、数値演算の対象となる始点と終点を指定し



#### ・位置指定

指定した時間位置のデータのみを数値演算の対象データとします。 すなわち、本指定法では、指定した時間軸上にある<u>1ポイント</u>分のデータの みに数値演算操作が施されます。

指定方法の"位置指定"をチェックし、[対象位置指定]ボタンを押す と、下記の画面が表示されますので、数値演算の対象となる位置を指定しま す。



# 4.5.2.3.3.4 データポイント数変更

(1) 意味

読み込まれた波形データのデータポイント数を変更します。

[データポイント数変更]ボタンを押すと、下記のデータポイント数変更ダ イアログボックスが表示されます。

現在のデータポイント数 47	104 _{points} ( 183.9961 _{ms} ) [[] 対象領域指定(O
変更後のデータポイント数 4	7104 🚔 points ( 183.9961 ms ) OK
処理種別	データ位置
◎ データポイント数の変更(D)	したいましょう しょう しょう しょう しょう しょう しょう しょう しょう しょう
◎ 指定した領域内のデータを切り取る(	T) 💿 左づめ(L)
◎ 指定した領域内のデータを抜き取る(	E) の 右づめ(R)

<処理種別>

どのような方法で波形データのデータポイント数を変更するのかを選択します。

・データポイント数の変更

現在のデータポイント数から変更したいデータポイント数の値そのものを入 力します。

変更後のデータポイント数は、現在のデータポイント数に対して増やすことも 減らすこともできます。

・指定した領域内のデータを切り取る

処理対象の波形データから指定した範囲のデータ部分を抜き取り、残った部 分のみを新しい波形データとします。

本処理種別では変更後のデータポイント数は、現在のデータポイント数に対し て減らすことのみが可能になります。

・指定した領域内のデータを抜き取る

処理対象の波形データから指定した範囲のデータ部分を抜き取り、抜き取った部分を新しい波形データとします。

本処理種別では変更後のデータポイント数は、現在のデータポイント数に対し て減らすことのみが可能になります。 <データポイント数>

本項は、前項の「処理種別」が"データポイント数の変更"の場合のみ入力する 必要があり、新しいデータポイント数 R' を入力します。

機能を用いると、サンプリング周波数 fs は元の値を保ったまま、データポイント 数が変更された波形データが生成されます。

すなわち、フレームタイムTが、データポイント数の変化に比例して増減することになります。

T=R'/fs[s] R': 新しいデータポイント数

・旧データポイント数 R > 新しいデータポイント数 R' の場合

フレームタイム T が減る分旧データの一部も破棄されます(破棄される箇所 は後述する"データ位置"の指定により異なります)。

・旧データポイント数R < 新しいデータポイント数R' の場合

フレームタイムTが増える分データの追加が必要になりますが、その場合ゼ ロデータが付加されます(付加される箇所は、後述する"データ位置"の指定 により異なります)。

<データ位置>

「処理種別」が"データポイント数の変更"の場合のみ選択する必要があり、 データポイント数の変更に伴う波形データの変更を行う際の、基準位置を指定し ます。

- ・センタリング
   旧データの中心を基点にデータの増減を行います。
   左端右端均等にデータの付加、破棄が行われます。
- ・左づめ

旧データの左端を固定してデータの増減を行います。 旧データの右端のデータからデータの付加、破棄が行われます。

・右づめ

旧データの右端を固定してデータの増減を行います。 旧データの左端のデータからデータの付加、破棄が行われます。 <対象領域指定>

「処理種別」が"指定した領域内のデータを切り取る"及び"指定した領域内 のデータを抜き取る"の場合のみ有効です。

[対象領域指定]ボタンを押すと、範囲指定ダイアログボックスが表示されま すので、対称範囲を指定します



#### 4.5.2.3.4 CSV データファイル

(1) ファイル形式

テキストファイル (MS-DOS形式)

(2) データの記述形式

サンプリング時刻のデータを、時刻の順に、下記のように記述します;

	1列目	2 列目	3 列目		
1 行目	Time(ms),	データ名1,	データ名 2,	データ名3,	
2 行目	0.0,	***.***,	***.**,	**.**,	
3行目	Δ t,	*** ***,	*** ** ,	**.**,	
	2Δt,	***.***,	***.**,	**.**,	
	Т,	*** ***,	*** **	**.**,	

・1 行目の文字列データ(データ名)は指定しなくても構いません。

・各データ(列)の順序は、特に規定はありません。

・時間データは指定しなくても構いません。

(3) データの単位

記述されるデータの単位はデータファイルを選択後に指定します。

(4) サンプリング周波数

記述されるデータのサンプリング周波数は、データファイルを選択後に指定します。 時間データがある場合には、サンプリング周波数を時間データから自動的に算出するこ とも可能です。

#### 4.5.3 トレランス定義

(1) 意味

トレランスチェックの条件定義を行います。

振動試験の実施において、供試体の条件(共振特性の鋭さの度合,非線形要素の介在等)によっては、応答 PSD の目標 PSD への一致が望み通りには実現できないこともあり得ます。

そこで、このような場合における試験続行のための条件をあらかじめ決めておく、ということ が必要となるわけですが、本システムでは次の4種の制御応答のチェック条件を設定することが できます。

A ①警告許容バンド幅

②中断許容バンド幅

- B ①警告 rms レベル
  - ②中断 rms レベル

ここで「警告」というのは、設定した条件の範囲の外に出る応答量が検出されたとき、本シス テムが警告を発することを意味し、「中断」というのは試験実施をその時点で中断する(信号出 力が停止する)ことを意味します。対象となる応答量には、指定レベル範囲を逸脱した応答スペ クトルのバンド幅および応答のrms値とがあります。上記A, Bがこの各々に対応します。

トレランスは、上記Aの指定を行うためのものです。

応答rmsの監視条件は、上記Bの指定を行うためのものです。

なお、、「トレランス」は必ず定義しなければなりませんが、「応答 rms の監視条件」は必要 がなければ、定義しなくてもかまいません。

制御目標定義ダイアログで、[トレランス定義]ボタンを選択すると、トレランス定義定義画 面が表示されます。

トレランス定義				? 💌
■ 警告ラインを定義	する 🛛 下限ラインを	使用する		ОК
	上限レベル	下限レベル	許容幅	キャンセル
中断チェック	6.00 🚔 dB	-6.00 🚔 dB	0.00 🚔 Hz	詳細定義( <u>D</u> ) >>
警告チェック	3.00 🚔 dB	-3.00 🊔 dB	0.00 🚔 Hz	

<トレランスチェック>

応答 PSD の目標 PSD への一致不一致をチェックするため、あらかじめ定められたトレランスを 判定基準として行われるライン毎のチェックを「トレランスチェック」と呼びます。

本システムのトレランスチェックには、警告レベルと中断レベルとがあります。警告レベルは、 必要がなければ設定しなくても構いません。

#### 4.5.3.1 トレランス

(1) 意味

目標 PSD の存在する帯域全体でのトレランスチェックの条件を設定します。

トレランスは、必ず設定しなければなりません。

なお、このトレランスのことを、以降の説明では標準のトレランスと呼ぶことにします。

トレランスには、次の定義項目があります。

<レベル>

目標 PSD からの逸脱を監視する警告/中断レベルを指定します。

レベルは、目標 PSD に対する相対レベルで指定します。

警告チェックを行う場合は、中断レベルと次の関係を満たさなければなりません。 |警告チェックレベル| ≦ |中断チェックレベル|

<許容幅>

警告/中断レベルからの逸脱を許容する周波数幅を指定します。

警告/中断レベルからの逸脱が検出された周波数帯域の合計値が、この指定値より小さけ れば、警告/中断は発動されません。

定義した許容幅が、目標 PSD の存在する帯域幅以上(目標 PSD の存在する帯域幅に等しい 場合も含む)の場合は、全ラインで逸脱が検出されても警告/中断は発動されません。

## 4.5.3.2 警告ラインを定義する

(1) 意味

警告チェックを使用するか否かを指定します。

中断チェックは必ず実行しなければなりませんが、警告チェックは使用しないことも可能 です。

この設定は、標準のトレランス、拡張トレランスにおいても有効です。

# 4.5.3.3 下限ラインを使用する

(1) 意味

下限レベルのチェックを使用するか否かを指定します。

上限レベルのチェックは必ず実行しなければなりませんが、下限レベルのチェックは使用 しないことも可能です。例えば、リミット制御を実施する場合は使用しないことも考えられ ます。

この設定は、標準のトレランス、拡張トレランスにおいても有効です。

#### 4.5.4 応答 rms 監視

(1) 意味

「応答 rms の監視」の項目で、試験実施中に、当該制御応答の rms 値を常に監視するか否かを 指定します。監視の動作には次の2つがあります。

① 応答 rms 値による警告チェック

制御応答の rms 値が本項目に定めた値を上回った(下回った)場合に、本システムは警告 を発します。

② 応答 rms 値による中断チェック

制御応答の rms 値が本項目に定めた値を上回った(下回った)場合に、本システムは直ち に信号出力を停止し、試験実施を中断します。なお、、このとき、ドライブ信号の停止動 作は、基本・制御条件の「出力停止時間」の設定値によって決められた時間をかけて穏や かに信号を絞るようにして生じます。

- 「警告チェック/中断チェック」を実施する rms 値のレベルの指定には、次の方法があります。
  - ・上限レベルを目標 PSD の rms 値に対する相対レベルで指定する
  - ・下限レベルを目標 PSD の rms 値に対する相対レベルで指定する
  - ・上限レベルを絶対レベルで指定する

相対値でレベルを指定した場合は、加振レベルによって目標 PSD の rms 値のレベルも変わるため、中断チェック/警告チェックのレベルもそれに応じて変化します。

#### 4.6 入力チャネル

#### 4.6.1 概要

本システムでは、入力チャネルに、次の3種別があります:

- ・主制御チャネル
- ・制御チャネル
- ・モニタチャネル

<主制御チャネル>

本項目は、当該チャネルが「制御チャネル」に指定されている場合にのみ、設定することがで きます。

出力チャネルが複数ある場合の制御においては、各出力チャネルと制御チャネル間の位相情報 も含めた波形制御を行う必要があります。本システムでは、制御を行うにあたって、制御チャネ ルの内、波形制御を行う役割を担う入力チャネルを「主制御チャネル」と呼びます。

<u>1つの加振グループに属する全使用チャネルの内、少なくともひとつは主制御チャネルとして</u> 定義しなければなりません。ただし、通常はその数は1つだけで十分です。

本システムでは、加振グループ毎に目標 PSD を設定します。波形制御を行うにあたって、その 目標となる波形は目標 PSD を満足するランダム波形になります。従って、同じ加振グループに複 数の主制御チャネルを設定した場合、各々の主制御チャネルの目標波形は、同じランダム波形に なります。通常、供試体が全制御帯域において剛体として振る舞うことは期待できず、複数の入 カチャネルの応答波形が同じになることはありません。このことから、同じ加振グループに複数 の主制御チャネルを設定するという事は、制御器にとっては、物理的に不可能な要求であるのが 普通です。しかし制御器自身は、このような不可能な要求に対しても、無理矢理、要求を満たす ように制御(加振)を行いますので、ひどい場合には、供試体、加振機を破損させることも有り 得ます。

1つの加振グループに、複数の主制御チャネルを指定する場合には、次項目の「ドライブ生成 の重み」も考慮に入れ、十分に注意して設定してください。

<制御チャネル>

制御チャネルは、その応答入力を、予め与えられている制御目標に一致させることが本システ ムの動作の目的となる重要なチャネルです。

<モニタチャネル>

モニタチャネルは、制御とは無関係に、所定の応答点での応答観測を行うためのものです。 制御チャネルとは異なり、モニタチャネルの観測対象とする物理量のディメンジョンは各チャ ネル毎に独立に設定することができます。 例えば、制御量が加速度である時に、あるモニタチャネルでは変位データをモニタし、別のモ ニタチャネルでは力のデータをモニタするといったことができます。

また、モニタチャネルには、「モニタ rms の監視」や「モニタ PSD の監視」を実施することが できますので、上記の機能と合せると、例えば制御は加速度で実施するが、ある応答点の変位を モニタし、設定した変位制限を越えた場合には試験実施を強制的に中断する、といった使い方が できます。

<u>本システムでは、使用する入力チャネルの全てが、モニタチャネルとして定義されます。</u>従って、制御チャネルもモニタチャネルとしての機能を持っています。

<u>主制御チャネル、制御チャネルの制御対象とする物理量は、基本的には制御量と同一のディメ</u> ンジョンでなければなりません。

このようにして、本配置の定義により、本テスト実行時の入力系形成仕様が、完全に確定します。

一方、使用する全チャネルには、その入力チャネルが属する「加振グループ」を、本配置定義 において、定義します。この情報により、制御入力系と出力系の対応関係が確定することになり ます。また、この情報により、制御チャネルの「目標 PSD」も決定します。

## 4.6.2 入力チャネル配置

入力チャネルのダイアログにおいて、使用する入力チャネルの設定を行います。

እታ	チャネル配置										? 🗙
N 1 2 3 4	o. チャネル名 Ch1 Ch2 Ch3 Ch3 Ch4	グループ名 Group 1 Group 2 Group 1 Group 1	割当 000-Ch1 000-Ch2 000-Ch3 000-Ch4	入力感度 2760 pC/(m/s2) 260 pC/(m/s2) 30 pC/(m/s3) 30 pC/(m/s4)	入力タイプ チャージ入力 (1 mV/pC) チャージ入力 (1 mV/pC) チャージ入力 (1 mV/pC) チャージ入力 (1 mV/pC)	極性正止止止	種別 主主制御御 学生 主 王 走 便 用	rms監視	PSD監視	Užyh	这加(A) 変更(C) 削除(D) ① ① 未使用 ▼ TEDS更新(D) OK
	表示加振グループ	全てを表示		•				参照	R	登録	キャンセル

「:自力ロ]	新しいスカチャ	ネルを追加します
胆加	和  しい ハノノノ ギ	小ルを迫加しより。

[変更] 選択した入力チャネルの設定内容を変更します。

[削除] 選択した入力チャネルを登録上から削除します。

[↑] [↓] 選択した入力チャネルの登録順を変更します。

登録順は、グラフ表示の順番に関係する程度です。

[未使用] 制御・モニタチャネルとして使用しません。

- [モニタ] モニタチャネルとして使用します。
- [制御] 制御チャネルとして使用します。
- [主制御] 主制御チャネルとして使用します。
- [TEDS 更新]
   入力感度を接続されている TEDS 対応 IEPE センサから取得し、自
   動設定します。本機能は、TYPE II のハードウェアで有効です。

[表示加振グループ] 加振グループを選択すると、そのグループに設定されたチャネル 情報だけを一覧に表示されます。'全て表示'を選択した場合は 設定されている全てのチャネル情報が一覧に表示されます。

なお、、本システムでは定義した「入力チャネルの定義内容」をファイルに保存し登録すること ができます。「入力チャネルの定義内容」を登録しておけば、他のテストでも簡単にこれらの条 件を使用できます。

- [参照] : ファイルに保存されている「入力チャネルの定義内容」を参照し、その条件を 読み込んで使用します。
- [登録] : 作成した「入力チャネルの定義内容」を、ファイルに保存し登録します。

# 4.6.3 入力チャネル毎の定義項目

各加振グループ毎に下図に示す加神グループ情報の設定を行います。 ・詳細定義、ボタンを押下するとさらに細かな設定を行うことができます。

入力チャネル要素					? 💌
入力チャネル情	幸反				OK
チャネル名		モジュールID	▼ Ch	▼ 極性 ⑧正 ◎負	キャンセル
物理量	加速度	▼ 入力タイプ	チャージ入力 (1 mV/pC)	▼ 校正解除( <u>R</u> )	詳細定義(D)>>>
入力感度		pC/(m/s²)	•	TEDS接続(E)	
入力チャネル種	別モニタ	<b>-</b> t	加振グループ Group1	-	
ドライブ生成の	)重み	.0			

最初に表示される画面

入力チャネル要素						? 💌
入力チャネル情	幸履					ОК
チャネル名		モジュールID	-	Ch	▼ 極性 ◎正 ◎負	キャンセル
物理量	加速度    ▼	入力タイプ	チャージ入力	(1 mV/pC)	▼ 校正解除( <u>R</u> )	<< 簡易定義(S)
入力感度	pí	)/(m/s1)	-		TEDS接続(E)	
1 + - +				0		
人力チャイル種	51 t_3	▼ Л.	1振クルーフ	Group I	•	
トライフ生めい	)重み   1.0	v				
平均化重みづけ	係数		Ŧ			
🔲 チャネル固有	iの平均化パラメータを指決	E M 4	× E	8 🔺 120	DOF	
- モニタrms	を監視する					
	1921 1001	チェック	中断チュ	ック		
目標相対上別		* *		dB		
目標相対下別		* *		dB		
絶対上限レベ	JU 🗆 🗖	* *		m/s²rms		
「監視プロフ	ファイルを使用する					
プロファイル	未定義 定義(P)					
	プロファイル再定義( <u>A</u> ).	1				
トレランス	未定義 定義(T)					
	774 U.C. FAUSAF					
	// I///ca/00/0/1					

'詳細定義(D)'ボタンを押下した後の画面

## 4.6.3.1 ドライブ生成の重み

(1) 意味

本項目は、当該チャネルが「主制御チャネル」に指定されている場合にのみ、設定することができます。

伝達関数マトリックスHから、イコライゼーションマトリックスG を算出する(本質的 には逆行列演算ですが、本システムではHが正方行列でない場合にも通用するアルゴリズ ムを採用しているため、もう少し複雑なことをしています)時に、制御チャネル毎に割り 振ることのできる「重み」を指します。

このドライブ生成の重みW_i(i=1,2,…m)は、各制御チャネルに対して定義され、

 $0 < W_i \leq 1.0$  :i=1,2,...m

の値を持つべきものです。すべての W_iに対して値 1 を与えるのが(重みづけを均等とする)通常の使用法です。

ドライブ生成の重み W_iの働きを、応答点の数 m の方が加振機の数 n より大きい場合 について、説明します。

例えば、極端な例として、(3x1) すなわち加振機は1台で制御応答点が3点ある場合を考 えます。

このような場合には、3点の応答波形をきちんと目標波形通りに一致させると云うことは(供試体が剛体として振る舞い、かつ3点の目標が同じであるというような場合を別に すれば)そもそも無理な要求であることが一般です。

このような場合に、応答点毎に定められたドライブ生成の重み W_iが与えられていれば、 波形制御の重点をどの制御点に置くかという指示を行うことができるわけです。(どの制 御点の応答波形を重視して、目標波形に一致させるのかを指定できます。)

つまり例えば、 $W_1=0.1$ ,  $W_2=1.0$ ,  $W_3=0.1$ のような重みづけ係数を与えれば、制御点2の 応答が目標に一致することを重点においた制御が実施されます。逆に言えば制御点1、3 は軽視されます。

#### 4.6.3.2 平均化重みづけ係数

(1) 意味

本項目は、当該チャネルが「主制御チャネル」または「制御チャネル」に指定されてい る場合にのみ、設定することができます。

1つの加振グループに制御チャネルが2個以上所属する場合は、所属する制御チャネル の応答スペクトルを1つのまとまりとして、目標スペクトルと比較しなければなりません。 そのためには、1つの加振グループに所属する全制御チャネルの応答スペクトルから、1 つの制御応答スペクトルを得なければなりません。

各制御チャネルの応答スペクトルを、ライン毎に算術平均したデータを制御応答スペクトルとして制御する方法を、「平均値制御」と言います。

本システムでは、指定した制御チャネルが複数ある場合、全制御チャネルにおいて「平 均値制御」の定義を実施し、必要に応じて任意の制御チャネルで次項目の「最大値制御」 を選択するという形式をとっています。

本項目は、「平均値制御」のための制御応答スペクトルを算術平均する際の各制御チャ ネルの重み付けを指定するものです。

制御チャネルjの応答スペクトルを , 平均化重みづけ係数を Wj として、制御応答スペクトル of を式で表現すると次のようになります。

$$\overline{\phi} = \frac{1}{W} \sum_{j=1}^{c} W_j \overline{\phi}^j$$

ここに、cは加振グループに所属する制御チャネル数です。また、上式のWは次のように表わせます。

$$W = \sum_{j=1}^{c} W_j$$

通常は、各制御チャネルを均等に評価すべきでしょうから、この重み W_jは1としてください。

なお、、ここで各チャネルのデータ 🖗 は、基本・制御条件項目中で定義された平均化パ ラメータ M と E とを用い、各チャネル毎に平均操作を受けています。

## 4.6.3.3 最大值制御

(1) 意味

本項目は、当該チャネルが「主制御チャネル」または「制御チャネル」に指定されている 場合にのみ、設定することができます。

当該制御チャネルの最大値制御の実施・非実施をしてします。

最大値制御を実施している制御チャネルがあれば、それらのチャネルの各応答スペクトル øⁱ と、前項目の平均化重みづけ係数によって算術平均された全制御チャネルの平均化応答 スペクトル ø^M を、ライン毎に比較し、その中の最大値を選択してそのラインにおける制 御応答 øとします。

従って、当該制御チャネルで最大値制御を実施すれば、その応答スペクトルは、目標スペ クトルのレベルを上回ることはありません。

最大値制御を実施する制御チャネル j の応答スペクトルを φ, 平均化応答スペクトルを φ

$$\overline{\boldsymbol{\phi}} = \mathrm{MAX}\left[\overline{\boldsymbol{\phi}}^{1}, \overline{\boldsymbol{\phi}}^{2}, \dots, \overline{\boldsymbol{\phi}}^{c_{\mathrm{m}}}, \overline{\boldsymbol{\phi}}^{\mathrm{M}}\right]$$

ここに、1,2,cmは加振グループに所属する最大値制御を実施する制御チャネルです。

なお、、ここで最大値制御を実施する各チャネルのデータ o は、基本・制御条件項目中 で定義された平均化パラメータ M と E とを用い、各チャネル毎に平均操作を受けています。

当該チャネルを、全制御チャネルの平均化応答スペクトル  $\phi^{M}$  の算術平均には参加させず、 純粋に最大値制御のみだけで使用したい場合は、前項目の平均化重みづけ係数  $W_j$ の値を 0 としてください。

## 4.6.3.4 チャネル固有の平均化パラメータを指定

(1) 意味

本システムでは、定義した入力チャネルの全てが、モニタチャネルとして指定されます。 制御チャネルとして指定した入力チャネルも、モニタチャネルとしての機能を持っていま す。

当該チャネルの応答そのものを見る機能が、「モニタチャネル」機能です。モニタ応答も 制御応答(制御応答を算出するための当該チャネルの応答データ)と同様に、平均処理を 行いながら観測します。

本項目は、基本・制御条件の平均化処理のためのパラメータ M と E とは別に、入力チャ ネルの応答スペクトル、すなわちモニタスペクトル (MON の平均化処理のためのパラメータ M と E を、独自に設定するか否かを指定するものです。

チャネル固有の平均化パラメータを指定する場合は、チェックボックスにチェック(× 印)を入れて、平均化パラメータのEとMを設定します。EとMの意義は、基本・制御条 件のそれと同じです。

また、チャネル固有の平均化パラメータを指定しない場合は、当該チャネルのモニタスペクトルのモニタスペクトルの平均化パラメータは、基本・制御条件の設定と同じ条件で行われます。

なお、、本機能は、当該入力チャネルの指定が、「主制御チャネル」または「制御チャネ ル」であってもなくても、有効です。

#### 4.6.3.5 モニタ rms を監視する

(1) 意味

本項目で、当該入力チャネルが「モニタ rms の監視」を行うか否かを指定します。

「モニタ rms の監視」の意義は、目標 PSD の定義項目中の「応答 rms の監視」と同じのものです。

つまり、モニタ rms の監視とは、本システムの保護機能で、試験実行中に、当該チャネルの応答モニタ rms 値を監視し、その rms 値のレベルによって指定された動作を行うものです。

モニタrmsの監視動作には、次の2種類があります。

中断チェック

モニタ rms を監視する場合、「警告チェック」は、必ずしも指定する必要はありませんが、 「中断チェック」は、必ず指定しなければなりません。従って、「警告チェック」を実施 する場合には、「中断チェック」の指定も合わせて行わなければなりません。

なお、、「警告チェック/中断チェック」を複合して実施する場合は、指定する rms 値の レベルは、次の関係を満たさなければなりません。

|警告チェックレベル| ≦ |中断チェックレベル|

「モニタ rms を監視する」には、チェックボックスにチェック(×印)を入れます。 そして、実施する監視の動作の設定します。

#### 4.6.3.5.1 中断チェック/警告チェック

(1) 意味

「警告/中断レベル」の指定値の概念,定義の仕方,生じる動作は目標 PSD の定義 項目中の「応答 rms の監視」のそれと同じです。チェックの対象となるものが、制御 応答 $\phi$ の rms 値であるか、モニタスペクトル $\phi^{i}_{MON}$ の rms 値であるかが異なるのみ です。

「中断チェック/警告チェック」を行った場合は、制御運転中、当該入力チャネル へのアナログ入力信号(当該入力チャネルの応答)のrms値を常に監視し、当該入力 チャネルのモニタrms値が、「警告チェック/中断チェック」での指定値を上回った (下回った)場合には、警告/中断が発動されます。

ここで「警告」というのは、設定した条件の範囲の外に出る応答量が検出されたと き、本システムが警告(ブザー音)を発することを意味し、「中断」というのは試験 実施をその時点で中断する(信号出力が停止する)ことを意味します。 「中断チェック/警告チェック」を実施するレベルの指定方法には次のものがあり ます。

- ・上限レベルを目標 PSD の rms 値に対する相対レベルで指定する
- ・下限レベルを目標 PSD の rms 値に対する相対レベルで指定する
- ・上限レベルを絶対レベルで指定する

相対値でレベルを指定した場合は、加振レベルによって目標 PSD の rms 値のレベル も変わるため、中断チェック/警告チェックのレベルもそれに応じて変化します。ま た、入力チャネルで観測する物理量の次元が、制御物理量のそれと異なる場合は、絶 対レベルでしか指定できません。

「中断チェック/警告チェック」を実施するには、中断チェックまたは警告チェックに対応するチェックボックスにチェック(×印)を入れ、選択した項目に rms 値のレベルを指定します。

# 4.6.3.6 監視プロファイルを使用する

(1) 意味

各モニタチャネル毎に絶対的な値で監視レベルを設定し、モニタ応答を監視する場合は、 「監視プロファイルを使用する」にチェックを入れます。

その特長は、モニタ応答を監視するだけでなく、リミット制御を実施することができるこ とです。その監視動作には、次の3種類があります。

- ・中断チェック
- ・警告チェック
- ・リミット制御(※オプション)

監視レベルを絶対レベルで定義しますので、当該チャネルの観測物理量が制御量に一致している必要がなく、どんな観測物理量であっても本項目を定義することができます。例えば、制御は加速度で掛けるが、ある部位は変位センサの観測による変位で監視し、またある部位は力センサの観測で監視する、といったことが自在にできます。

#### 4.6.3.6.1 プロファイル定義

# (1) 意味

監視プロファイルの形状を指定します。

PSDタイプ選択	<b>—</b> ×-
<ul> <li>● プレイクボイ</li> </ul>	ントPSD定義
◎ 実測PSD定義	義
(人)	キャンセル

PSD の定義方法は、「4.5.2 PSD 定義」を参照してください。

#### 4.6.3.6.2 トレランス定義

(1) 意味

監視トレランスを設定します。

トレランス定義			? 💌
■ 警告ラインを定す	する 📄 下限ラインを使用する		ОК
	上限レベル	許容幅	キャンセル
中断チェック	6.00 🚔 dB	0.00 🚔 Hz	詳細定義(D)>>>
警告チェック	3.00 🚔 dB	0.00 🚔 Hz	

トレランスの定義方法は、「4.5.3 トレランス定義」を参照してください。なお、設定 は、「上限」と「許容幅」のみを行います。

# 4.6.3.6.3 監視プロファイルによるリミット

(1) 意味

「リミット制御」は、制御運転中、当該入力チャネルへの応答 PSD を常に監視し、当該入力チャネの応答 PSD が、絶対値指定の監視 PSD を上回りそうになった場合には、リミット制御が実施されます。(※オプション)

リミット制御が実施されると、監視 PSD を上回ることがないように、ドライブが調節 されます。正確に言うと、<u>目標 PSD を小さくすることによって、ドライブが調整されま</u> <u>す。</u>従って、出力ドライブが小さくなるので、一般的に、制御応答 PSD と他の入力チ ャネルの応答 PSD も小さくなります。この処理を、各ラインごとに実施します。

# 4.7 データ保存条件

## 4.7.1 概要

テスト中に計測されたデータをハードディスク等に保存する場合の各種設定を行います。

K2 システムでは、試験中に計測された全てのデータを1つのバイナリファイル(*.VDF)として保存します。

なお、保存対象となるデータは「試験実施中」のデータのみで、「初期測定中」のデータは、 保存できません。

保存条件
<ul> <li>● 保存する</li> <li>● 保存しない</li> <li>■ 保存先を指定する</li> <li>● 参照…</li> </ul>
☑ テストファイル名をプリフィックスにする
シーケンス番号 開始値 1 <del>- 1</del> 最小桁数 3 <del></del>
▼定期保存 🗧 🗧 sec
OK キャンセル

# 4.7.2 データの保存条件

各保存条件について説明します。

- 「保存する」「保存しない」ボタン データファイルを自動保存する場合には「保存する」を選択し、自動保存しない場合は 「保存しない」を選択します。
- 2. 保存先を指定する

データファイルの保存先のフォルダを指定します。「参照」ボタンを押してフォルダを 指定します。

保存先を指定しない場合、データファイルはテストファイルと同じフォルダに保存され ます。

3. テストファイル名をプリフィックにする

データファイル名の頭に共通の語句をつけることができます。デフォルト名は「Data」

になっています。チェックを外すと保存名を変更することができます。

4. シーケンス番号

プリフィックしたデータファイルに通し番号を付けます。

開始値:開始番号を設定します。

- 例「1」を設定 → 「Data001.VDF」
- 最小桁数 : 通し番号の桁数を設定します。
  - 例「2」を設定 → 「Data01.VDF」

5. 定期保存

秒単位で定期的にデータを自動保存します。

6. テスト終了時に保存

テスト時間満了時のデータおよび、ユーザが中止を選択した場合など、テストが終了し た時のデータを自動保存する機能です。

# 4.8 実行ステータス

(1) 意味

加振実施に関わる各種情報を表示します。

これらの表示は各種条件にもよりますが、最短で制御ループタイム毎に更新されます。

- 🖏 新規テスト定義 - K2/Multi-Random				
ファイル(E) テスト定義(I) 実行操作(P) 編集(E) 表示(⊻) ウィンドウ(W) オプション	<u>0)</u> ヘルプ( <u>H</u> )			
Group1 Group2	AG SETTINGS HANG TESETI TIM	00 PP-244 7/10 2047-21/10		
日標 レベル 広答 ドライブ テスト経過時間	海美に	Drive Limit	Alarm Abort	
9.7468 0.00 9.5670 30.4 0:00.09 dB m/st rat mV rat	0:00:51 加振中	$\bigcirc \bigcirc$	00	
目標・応答グラフ 伝達関数 実行ステータス			×	
次の定美加振中				0.00
2013/07/18 13:29:05 ループカウント 22 試験経過時間 0:00:09 (残り 0:00:51)				dB
定義の変更 レベル 0.00 dB (増減値 +2.00 dB)				増減値
チェック結果(総合) 警告 0K 中断 0K リアルタイム処理(2PU負荷率 4.06 % (ビーク 5.61 %)				2.00
定義の追加目標データ				
Group2 9.7468 m/s² rms				
ままの前時 広答データ				
Group1 9.5670 m/s ² rms				
OFF         基本         0.00[         0.00]         0.00[         0.00]         Hz				
末定義状態 Group2 10.1443 m/s ² rms				
トレランス 警告チェック 中断チェック 基本 0.00[ 0.00] 0.00[ 0.00] Hz				
入力チャネルデータ				
Group1 Ch1 (000-Ch1) 9.5670 m/s ² rms				
uroupZ UhZ (UUU-UhZ) IU.1443 m/s2 rms				
ドライブデータ クレス Graup1 (k1 (000-0k1) 20 4 xV ma 2 7	トファクタ ~ [ 200]			
Group2 Ch2 (000-Ch2) 28.5 mV rms 2.78	σ [ 2.00]			
			NUM	2013/07/18 13:29:05

<表示内容>

(1) 現状況

現在のシステムの状態のメッセージ 「加振中」、「一時停止中」、「加振完了」(オペレータの指示によって中止)等

- (2) ループカウント 制御ループのカウント
- (3) 試験経過時間

'0dB' で加振された試験経過時間( '0dB' 以下に場合には計時が止まります)

(4) レベル

現在の加振レベル

(5) チェック結果(総合)

制御応答に対する各種チェックと出力ドライブに対するチェック果、モニタ応答に対する 各種チェック等の結果を総合した結果を表示します。

- (6) リアルタイム処理 CPU 負荷率現在の CPU 負荷率
- (7) 目標データ 加振グループ毎の現在の制御目標レベル
- (8) 応答データ加振グループ毎の現在の制御応答レベル
- (9) 応答チェック

加振グループ毎の制御応答のトレランスチェックとrmsチェックの結果が表示されます。

(10) 入力チャネルデータ

加振グループ毎の現在の制御ループにおける各入力チャネルデータのrms値等の情報が 表示されます。また、リミット制御が実施されている場合は、"リミット中"と表示されます。 各入力チャネルで実施している各種チェックの結果も表示されます。

(11) ドライブデータ

加振グループ毎の現在、実際に出力しているドライブ出力電圧

[実行ステータスパネル]

タブを切替えることで、各加振グループの状態が表示されます。

$\checkmark$										
Group1 Grou	52									
目標	レベル	応答	ドライブ	テスト経過時間	残り		Drive	Limit	Alarm	Abort
9.7468	0.00	9.5670	30.4	0:00:09	0:00:51	加振中				$\bigcirc$
	dB	m/s² rms	mV rms				-		100	~

# 第5章 メッセージとその意味

# 5.1 K2Multi-Random エラーメッセージ

メッセージ	意味/対処方法
・ループチェックで異常を検出	(意味)
	試験実施中の被制御系の応答特性を監視するループチェ
	ックにより、試験が中断されました。実行ステータスにお
	いて、エラーが生じた入力チャネルにエラーの内容が表示
	されます。
	A) 環境ノイズ過大[1] [2]
	初期ループチェックの応答が小さすぎるまたは微小
	加振中のノイズが大きすぎるために異常だと判断さ
	れました。
	B) ループオープン検出[1][2]
	試験実施中に応答特性が急激に小さくなったため、
	異常だと判断されました。
	C) 過剰応答検出[1] [3]
	試験実施中に応答特性が急激に大きくなったため、
	異常だと判断されました。
	D) オーバロード検出[1][4][5]
	試験実施中に入力チャネルにハードウエアの最大入
	力値 (電圧入力時:±10V,電荷入力時:±10000pC ま
	たは:±1000pC)を上回る信号が入力されました。
	(対処:方注)
	まず、下記の確認を行ってください
	・システムの結線誤り
	・感度、入力形式等入出力チャネル情報定義誤り
	・ケーブル断線
	・ピックアップ取り付け不具合
	・加振システムの異常
	・供試体の異常
	上記確認後、問題がなければ、エラーの内容に対応した
	対処を施してください。
	[1] 基本・制御余件のルーノナェックを「疲い」に設正 オス
	7 つ。 [2] 加振グループ情報の「初期出力電圧」を上げろ
	(初期測定中または初期イコライゼーション中のエ
	ラーの場合)
	[3] 加振グループ情報の「初期出力電圧」を下げる。
	(初期測定中または初期イコライゼーション中のエ

メッセージ	意味/対処方法
	ラーの場合)
	[4]電荷入力の場合、入力チャネルの「入力タイプ」を
	「チャージ入力(1mV/pC)」に設定する。
	[5]使用しているセンサを感度の低いものに交換する。
・中断チェックによって試験を中	(意味)
断	試験実施中の各種中断チェックによりエラーが生じたた
	めに試験が中断されました。実行ステータスにおいてエラ
	ーの内容が表示されます。
	A) 中断チェックによって試験を中断[1] [2] [3] [5] [6] [7]
	[8]
	各種トレランスチェックにおいてエラーが生じたた めに試験が中断されました。
	B) 中断チェック[ドライブ]によって試験を中断[4] [5]
	[6] [7] [8] 試験実施中に加振グループ情報の「許容クリッピン グ比率」を上回る出力電圧が要求されたために試験 が中断されました。
	(対処方法)
	まず、下記の確認を行ってください。
	・システムの結線誤り
	・感度、入力形式等入出力チャネル情報定義誤り
	・ケーブル断線
	・ピックアップ取り付け不具合
	上記確認後、問題がなければ、下記等のエラーの内容に
	応じた検討を行ってください。
	[1] 「トレランス」の変更
	[2] 基本・制御条件の「イコライゼーションモード」
	[3] 基本・前御衆性の「平均化ハファータ」の変更 [4] 加振ガループ連起の「山力電圧制阻値」及び「洗」
	(5) 制御点の見直し
	[6] 使用しているピックアップの見直し
	[7] テストパターンの見直し
	[8] 治具の設計の見直し

メッセージ	意味/対処方法
・初期化失敗	(意味)
	試験実施に先立って行われる、I/O ユニットの初期化で
	エラーが検出されました。
	(対処方法)
	・I/O ユニットの電源が入っていない
	・パソコン-I/O ユニット間が未接続
	・I/O ユニットのボード差込み不良
	・K2 I/F ボードの差込み不良
	・ドライバの動作不良
	等の確認を行い、何度か再実行を試み、それでも再発する
	場合、弊社にご連絡ください。
・プログラム実行に必要なライセ	(意味)
ンスが見つかりません	K2 のプロテクト情報のチェックでエラーが検出されま
	した。
	(対処方法)
	・ライセンス情報
	・プロテクトデバイスが接続されているパソコンの IO ポ
	ート(COM または LPT、USB)の動作不良
	・プロテクトデバイスのボード差込み不良
	等の確認を行い、何度か再実行を試み、それでも再発する
	場合、弊社にご連絡ください。
・ハードウエアエラーが発生	(意味)
	パソコンまたは I/O ユニットのエラーが検出されまし
	た。
	(対処方法)
	・I/O ユニットの電源が入っていない
	・パソコン-I/O ユニット間が未接続または接触不良
	・I/O ユニットのボード差込み不良
	・K2 I/F ボードの差込み不良
	・ドライバの動作不良
	・パソコンのハードディスクが DMA を使用する設定に
	なっていない
	等の確認を行い、何度か再実行を試み、それでも再発する
	場合、弊社にご連絡ください。
メッセージ	意味/対処方法
-------------------	-----------------------------
・CPU 負荷によってテストが中断	(意味)
されました	試験実施中の演算負荷が大きくない過ぎたため試験が中
	断されました。
	(対処方法)
	・K2 以外のアプリケーションを使用している場合には、
	使用するのをやめる
	・基本・制御条件の「周波数レンジ」を小さくする
	・基本・制御条件の「ライン数」を小さくする
	・使用するチャネル数を少なくする
	等の検討を行ってください。

# 第6章 補足説明

# 6.1 動作設定

<操作手順>

メニューバーの「オプション」を選択し「動作設定」をクリックすると、「動作設定ダイアログ」が表示されます。

**	·ウ(W)	オプション(0) 動作設定(A)	
	W	グラフ色設定(G)       環境設定(E)	
	15	Webモニター設定(W) E-Mail配信機能設定(M) レポート ジェネレーター設定(R) 言語選択(S)	2

動作設定		<b>—</b>
一伝達率表	示単位	
⊚ dB	۵ %	◎ 単位/単位
		リバ キャンセル

<伝達率表示単位>

伝達率グラフの振幅値の表示単位を選択します。

本指定は、伝達率を計算する2つのデータの単位が同じ伝達率グラフでのみ有効です。

伝達率を計算する2つのデータの単位が異なる伝達率グラフの場合、振幅値の表示単位は常に 「単位/単位」になります。

## 6.2 手動操作

手動操作ツールバーを使用すると、加振中に制御目標を変更することができます。 なお、手動操作ツールバーは、ユーザインタフェース画面の右端に表示されています。



なお、手動操作ツールバーが表示されていないときには、メニューの表示から手動操作ツールバーを選 択してください。





手動操作		×						
加振レベル	-10.00 🚔 dB	ОК						
(増減値	2.00 🊔 )	キャンセル						
<ul> <li>ループ更新抑制</li> </ul>								

#### 6.3 制御運転データの取り込みと削除

テスト中断(終了)時の状態(テストに必要なデータ)は、加振終了状態でテスト定義ファイルを保 存することによって取り込むことができます。

これらのデータを制御運転データと呼ぶことにします。

制御運転データには次のものがあります

- ・伝達関数
- ・継続加振データ

制御運転データをテスト定義ファイルに取り込んで保存した場合、次のようなメリットとデメリ ットがあります。

#### [メリット]

以下のメリットがありますが、センサや供試体等のシステム構成や条件が異なる場合には、大 変危険ですのでご注意ください。その場合には、通常のテストと同様に、伝達関数を測定し、最 初から試験を実施してください。

<伝達関数の取り込み>

試験を実施したときの伝達関数を次の試験で使うことができます(伝達関数の測定をスキ ップできます)。

#### <継続加振データ>

加振レベルやテスト時間をテストを中止した状態から再開することができます。また、 「即時立ち上げ」を実施することも出来ます。「即時立上げ」とは、試験の開始時において 被制御系の伝達特性を測定する初期イコライゼーションの動作を行わないで、いきなり指定 されている加振レベルで加振を実施することです。

### [デメリット]

制御運転データを消去しない限り、テスト定義内容が一部変更できなくなります。

### 6.3.1 制御運転データの取り込み

制御運転データは、加振が終了している状態で取り込むことができます。

### 6.3.1.1 試験終了時に取り込む方法

<操作手順>

<Step1>

試験を終了します。

試験を終了時に現在の状態を定義ファイルに付加するかどうかの確認メッセージが表示され ますので、[はい]を選択します。



・伝達関数

伝達関数測定後であれば、定義に関連付けることが可能です。

・継続運転データ

初期イコライゼーション後であれば、定義に関連付けることが可能です。

テスト定義には関連付けられたデータ項目が追加表示されます。



# 6.3.1.2 定義モードで取り込む方法

<操作手順>

<Step1>

定義モードにおいて、以下の操作をすることにより「伝達関数」をテスト定義ファイルに取り込むことができます。

「伝達関数」は、データファイルから取り込むことができます。

メニューバーの「ファイル」から「伝達関数をインポート」を選択します。

	<u>i (å</u>	MultiRandom1.mran2 - K2/Multi-Rand	lom	
	ファ	·イル(F) テスト定義(T) 実行操作(P)	編集(E)	表示(V
	/	新規作成(N)	Ctrl+N	
Ŷ		開<(O)	Ctrl+0	
		上書き保存(S)	Ctrl+S	:
		名前を付けて保存(A)		
		別の加振システム情報を読込む(F)		
		入力環境情報を新規に読込む(I)		
		入力環境情報を新規登録(K)		
		伝達関数をインポート(Y)		
		グラフデータ保存(M)		
		印刷(P)	Ctrl+P	•種)
		印刷プレビュー(V)		「人」
		プリンタの設定(R)		······································
		ページ設定(U)		
		レポート作成(T)		 7 =
		1 MultiRandom1.mran2		0(
		2 MultiRandom3.mran2		0(
		3 MultiRandom2.mran2		12.
		4 MultiRandom1.mran2		振シ
		アプリケーションの終了(X)		振り
				一力中 
		the line in the line is a second seco		1112

取り込みたいデータファイルを選びます。 [開く] をクリックします。

なお、サンプリング周波数等の諸条件がテスト定義と一致し、テスト定義で利用できるデータでなけ れば本項目は有効になりません。

	ファイルの場所(1):	鷆 Multi-Random		- G 🕫 📂 🖽 -	
	(Pa)	名前	*	更新日時	種類
	るか 最近表示した場所	Multi-Randor	n01-data.vdf2	2017/09/19 9:48	Excitation dat
	デスクトップ				
$\dot{\mathbf{r}}$	ライブラリ				
り					
	コンピューター				
	ネットワーク				
		•	III		•
		ファイル名( <u>N</u> ):	Multi-Random01-data.vdf2	-	
		ファイルの種類(工):	加振データファイル(*.vdf2)	<b></b>	キャンセル
		アブリケーション	Multi-RANDOM		
		コメント			*

テスト定義には関連付けられたデータ項目が追加表示されます。



### 6.3.2 制御運転データの削除

「制御運転データ」を削除する場合は、次の操作手順を行います。

<操作手順>

<Step1>

削除する制御運転データを選択し、[定義の削除]ボタンを押します。





確認メッセージが表示されますので、 [はい]を押します。

MultiRandom1.mran2 - K2/Multi-Random 🛛 🔀
⑦ 伝達関数データ を削除します。 よろしいですか?
(はい(Y) いいえ(N)

### 6.4 伝達関数測定のスキップ(テストに取り込まれた伝達関数を使用する)

伝達関数が取り込まれているテストファイルでは、伝達関数の測定をスキップし、取り込まれている 伝達関数をテストで使用することができます。

ただし、センサや供試体等のシステム構成や条件が異なる場合には、大変危険ですのでご注意くださ い。その場合には、通常のテストと同様に、伝達関数を測定しなおしてください。

伝達関数の取り込みについては、「制御運転データの取り込みと消去」を参照してください。

<操作手順>

<Step1>

伝達関数が取り込まれているテストファイルを読み込み、 [実行開始] ボタンを押します。

			Ö					
🎡 MultiRa	ndom1.mran2 - K2/Multi-Random							- 7 💌
ファイル(E	) テスト定義( <u>I</u> ) 実行操作( <u>P</u> ) 編集	(E) 表示(Y) ウィンドウ(W) オブラ	レヨン(日) ヘルプ(日)					
新規作成			⋛ 2000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (100) (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000	★★ 月また 中止 中止 加振再	₿8			
		S ドライブ mV rms			Drive Lir	nit Alarm	Abort	
	<mark>テスト定義 </mark> 目標グラフ    ニューロギ					~		ly
次の定義	アスト定装         テスト定装情報         「レージュール構成」         加振システム情報         「基本・制御条件	伝達関数測定平均回数 8 回						
定義の変更	<ul> <li>⑤ 多軸・多点制御条件</li> <li>● 加振システム設定</li> <li>● ● 利御目標</li> <li>● ● 入力チャネル</li> </ul>							增減値
定義の削除	□ 同期型運動関東件     データ保存条件     ダ データ保存条件     ダ 満詰加速テーク     「広達開致データ							
OFF 未定義状態								
		2017/0//0.10.00.00	*				_	
		ZUI // 9/19 13:28:32 テスト定義	を元」しました。					
							NUM	2017/09/19 13:28:38

被制御系の伝達関数を測定します。

[伝達関数測定開始] ボタンを押します。



伝達関数が取り込まれているテストの場合には、伝達関数測定をスキップするかどうかを選択する画 面が表示されます。

ループチェックと伝達関数測定をスキップする場合には、全てのチェックボックスを外し、[OK] ボタンを押します。 [OK] ボタンを押すと、取り込まれている伝達関数が読み込まれ、ドライブ生成 待ち状態になります。



伝達関数測定のフェーズは、「ループチェック」と「伝達関数測定」の2つから成ります。新規に 「伝達関数測定」をするためには「ループチェック」が必ず必要です。

ここでの選択肢は、次の4つになります。

- 1) 「ループチェック」と「伝達関数測定」をスキップする(上記の内容)。
- ループチェック」のみを実施し、「伝達関数測定」をスキップする(配線ミス等がなく、制御システムが全て繋がっているかを確認だけする)。
- 3) 「伝達関数測定」を再測定する。「伝達関数測定」の前に必然的に「ループチェック」が実施 されます。
- 4)「伝達関数測定」を継続測定する(次項参照)。伝達関数測定を実施し、現在の伝達関数に足しこみます(伝達関数の平均化回数を増やします)。「ループチェック」は実施されません。

# 6.5 伝達関数の継続測定

伝達関数を継続測定し、現在の伝達関数に足しこみます。 伝達関数を測定し終わった後に伝達関数の平均化回数を増やしたい場合に利用します。 伝達関数の継続測定は下記の条件で行われます。

- ・「ループチェック」は実施されません。
- ・伝達関数測定時のドライブ波形は、足し込む対象の伝達関数を元に計算され、制御応答の周波数成 分がほぼフラットな特性を持つようにイコライズされたランダム波形になります。

<操作手順>

<Step1>

伝達関数が取り込まれているテストファイルを読み込み、[実行開始]ボタンを押します。

									Ë									
🎡 MultiRai	ndom1.mran2	- K2/Multi-	Random					/										di X
ファイル( <u>E</u> )	テスト定義(	I) 実行操	作( <u>P</u> ) 編集	(E) 表示()	⊻) ウィンド	[©] ウ(⊻) オ	プション(2)	ヘルプ(出	1)									
新規作成	<b>開く</b>	主義保存 :	データ保存	(1) (1) (1)	<b>!!!!</b> プレビュー		<b>東行開始</b>	<b>美</b> 子終了	Ritte at Bit	再実行	<b>P</b>	-時停止 加振祥	588					
		レベル dB	応答		ドライブ mV ri	ms	1						Drive	Limit	Alarm	Abort		
	テスト定義	目標グ	ラフ														レベル	
	テスト定義								_				_		<u></u>	×		
次の定義	5 7 A DEF	xinffx ジュール構)	戎	伝達関数	观定平均回	数 8 回	]											
	<ul> <li>⑤ 加振シ</li> </ul>	ステム情報																
定義の変更	<ul> <li>● 基本・制</li> <li>● 多軸・3</li> </ul>	則御樂件 多点制御条件	.														1 地流信	ă
531	<ul> <li>⑤ 加振シ</li> </ul>	ステム設定																
52		標															,	
定義の追加		・マイフレ 進制御条件																
<b>S</b>	データ	保存条件																
完美の削除		<del>施ナーク</del> 数データ																
224%00HJKR			- 1															
OFF																		
未定義状態																		
			ļ	2017/ 9	/19 13:28:2	2 テスト定	養を完了し	ました。										
	- W F 6															NUM	2017/00/10	13-28-38

または、伝達関数の測定が完了している時点でメニューバーの「実行操作」を選択し、「伝達関数再 測定」を選択します。確認メッセージが表示されますので、[はい]を選択します。





[伝達関数測定開始] ボタンを押します。



伝達関数の測定方法を指定する画面が表示されます。

「伝達関数測定を引き続いて実施する」にチェックを入れ、下記の指定を行い [OK] ボタンを押す と伝達関数の継続測定が実施されます。

・足し込む対象の伝達関数の指定

テストファイルに取り込まれている伝達関数を使用する場合には「定義に関連付けられている 伝達関数を使用」を選択し、現在の伝達関数を使用する場合には「前回測定した伝達関数を使 用」を選択します。

・平均化回数の指定

測定回数に継続測定する回数を入力します。



### 6.6 中断したテストを再開する

継続加振データが取り込まれているテストファイルでは、継続加振データが取り込まれた状態からテ ストを再開することができます。

<操作手順>

<Step1>

継続加振データが取り込まれているテストファイルを読み込み、[実行開始]ボタンを押します。



被制御系の伝達関数を測定し、加振開始待ち状態まで移行します。 [加振開始] ボタンを押します。



継続加振データが取り込まれているテストの場合には、テストを継続して実行するかどうかを選択す る画面が表示されます。

中断時からテストを再開する場合は、「テストを継続して実行する」をチェックし、 [OK] ボタン を押します。中断時のテスト状態(テスト経過時間と加振レベル)からテストが再開されます。



# 6.7 即時加振

継続加振データが取り込まれているテストファイルでは、「即時立ち上げ」を実施することが出来ま す。

ただし、センサや供試体等のシステム構成や条件が異なる場合には、大変危険ですのでご注意ください。その場合には、通常のテストと同様に、伝達関数を測定しなおして、即時加振を使わないでください。

<操作手順>

<Step1>

継続加振データが取り込まれているテストファイルを読み込み、[実行開始]ボタンを押します。

MutkBandom Lineard - K2/Mutk-Random         レーレー				Ä					
NAME       NX       TERR#       TULE       NX       TULE	MultiRar ファイル(E)	ndom1.mran2 - K2/Multi-Random ) テスト定義(工) 実行操作(2) 編集	E(E) 表示(⊻) ウィンドウ(₩) オ	ブション2) ヘルブ(出)					<b>-</b>
Ed レベル 広答 Fライブ     Prive Lint Alam Abort     Tr/tm     C     Tr/tm     T	新規作成	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	新日本 (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (10	<b>美行開始</b> 東于終了 開始	★★ 申止 中止 加振再	1			
アスト定義     目標グラフ       アスト定義     目標グラフ       アスト定義     「ホース       ジ フスト定義     「ホース       ジ 加速システム設定     「シ 加速システム設定       ジ う 約     ● 新聞       ジ う 約     ● 新聞       ジ フタ     ● 「加速       ジ 加速     ● 「加速       ジ 加速     ● 「ホース	目標		ぎ じっくづ mV rms			Drive Limit	Alarm A	bort	
2017/ 9/19 13:28:82 テスト定義を完了しました。	次の定義 次の定義 ご素の逸加 定義の通知 定義の開降 天花義状態	テスト定義     目標グラフ       テスト定義     テスト支援情報       ⑤ アスト支援情報     ⑤ 辺辺システム情報       ⑤ 辺辺システム情報     ⑤ 辺辺システム目報       ⑤ ジョンステム設定     ⑥ 別御日県       ⑥ ブーク保存条件     〇 回照並進時期条件       ○ ごご知知 テク     ⑦ ごご知知 テク	伝達開款測定平均回数 8 回 2017/ 9/19 13:28:32 テスト定	 ] ] 『義を完了しました。			×		<u>y</u>
			,		[			2017/00/10	12,20,20

被制御系の伝達関数を測定し、加振開始待ち状態まで移行します。 [加振開始] ボタンを押します。



継続加振データが取り込まれているテストの場合には、「即時立ち上げ」を実行するかどうかを選択 する画面が表示されます。

「即時立ち上げ」を実施する場合は、「即時加振を行う」をチェックし、 [OK] ボタンを押します。 中断時の伝達特性等の制御運転データを用いて、即時に加振を開始します。



# INDEX

С	
	CSV データファイル
Н	
	HPF
L	
	LPF
Р	
	PSD 定義 3-13, 3-44, 4-8, 4-24, 4-25
	PSD データファイル
	PSD リミット
R	
	rms 値 3-46, 4-28, 4-29, 4-34
V	
	イコライゼーションモード
え	
	演算種別
お	
	応答 rms 監視
か	
	下限ライン
	加振グループ配置
	加振時間
	加振システム情報
	加振システム設定4-1, 4-5, 4-18, 4-19, 5-1, 5-2
	加振レベル 3-28, 3-29, 3-30, 3-58, 3-59, 3-60, 4-4, 4-6, 4-7, 4-8, 4-9, 4-11, 4-52, 4-62, 4-67
	環境設定ファイル
	監視プロファイル
き	
	基本·制御条件4-1, 4-2, 4-15, 4-16, 4-26, 4-27, 4-52, 4-58, 4-59, 4-60, 5-1, 5-2, 5-4
	許容クリッピング比率
	許容電圧
<	
	グラフデータファイル
	クリッピング 1-1, 4-21
	クレストファクタ
	クロストーク情報平均回数 4-16
	クロストーク制御
	クロストーク制御情報4-15,4-16

け

	警告チェック4-51, 4-52, 4-61, 4-62, 4-	-63
	警告ライン	-51
	継続加振データ6-4, 6-	-18
さ		
	最高観測周波数	1-3
	最大値制御4-58, 4-	-59
l		
	試験時間3-1, 3-6, 3-32, 3-37, 4	1-5
	実行ステータス4-67, 5-1, 5	5-2
	実測 PSD 3-32, 4-25, 4-26, 4-29, 4-30, 4-	-31
	実測PSD定義	-25
	実測波形	-39
	自動開始	1-7
	周波数レンジ	5-4
	出力停止遷移時間	1-7
	初期出力電圧	5-1
	初期出力レベル	1-6
	処理種別	-48
す		
/	数值間演算	-46
廿		10
-	制御運転データ	-11
	制御速度	-15
	制御単位	-27
	制御方針	-12
	制御ライン数1-1、3-5、3-32、3-36、4	4-2
そ		
-	即時加振	-21
	即時立ち上げ	-21
た		
, _	多点·多軸制御条件	-15
ち		10
-	中断チェック	-63
	中断したテストを再開する	-18
7		10
	データ保存条件	-65
	テスト定義ファイル	2-2
	テストファイル	
	テストを継続して実行する	-20

	伝達関数再測定	
	伝達関数測定	
	伝達関数測定加振回数指定 4-10	
	伝達関数測定電圧 3-9, 3-10, 3-40, 3-41, 4-20	
	伝達関数測定のスキップ	
	伝達関数の継続測定	
と		
	ドライブ生成の重み 4-53, 4-57	
	ドライブ節約	
	トレランス	
	トレランス拡大	
	トレランス定義	
に		
	入力チャネル 1-1, 1-2, 4-1, 4-3, 4-5, 4-17, 4-20, 4-24, 4-53, 4-54, 4-55, 4-56, 4-60, 4-61, 4-	
	64, 4-68, 5-1, 5-2	
	入力チャネル情報2-2	
は		
	波形データの読み込み 4-36	
s		
	フィルタ処理	
	ブレイクポイント PSD 3-1, 4-25, 4-26	
	プロファイル定義	
$\sim$		
	平均化重みづけ係数 4-58, 4-59	
	平均化パラメータ4-3, 4-15, 4-16, 4-58, 4-59, 4-60, 5-2	
ほ		
	ホワイトノイズで加振	
ł		
	目標 PSD4-2, 4-8, 4-17, 4-22, 4-23, 4-24, 4-25, 4-35, 4-50, 4-51, 4-52, 4-53, 4-54, 4-61, 4-62	,
	4-64	
	モニタ rms	
る		
	ループチェック 3-27, 3-28, 3-57, 3-58, 4-5, 4-20, 5-1, 6-13, 6-14	
れ		
	レベルスケジューリング	
	レベル増減値	
	レベル変更	