正弦波振动控制系统

K2 K2Sprint

Multi-Sweep Sine 选项 使用说明书

K2Sprint/SINE的限制事项

- •可以使用的最大的输入通道是『2』通道。
- •不能附加『LIMIT CONTROL』选项。

IMV 株式会社

文书名 使用说明书

适合系统

K2/K2Sprint

软件 <Multi-Sweep Sine>

Version 11.0 以后

使用本应用程序需要:

<u>Multi-Sweep Sine 选项</u>

版本号	年月日	内容
10.0.0	2013.11.29	初版

第1	章	Multi-Sweep Sine	1-1
	1.1	概要	1-1
	1.2	启动方法	1-2
	1.3	基本操作体系	1-3
	1.4	试验文件	1-4
	1.5	设定项目	1-5
第 2	章	基本操作例	2-1
	2.1	频率分割扫描	2-1
	2.2	延迟扫描	2-19
	2.3	多点	2-37
第3	章	试验的定义	3-1
	3.1	概要	3-1
	3.2	基本・控制条件	3-2
		3.2.1 最高参考频率	3-2
		3.2.2 峰值振幅推定	3-3
		3.2.3 循环检测	3-3
		3.2.4 均衡化模式	3-4
	3.3	试验系统设定	3-5
		3.3.1 初始输出电圧	3-5
		3.3.2 最大驱动电圧	3-5
		3.3.3 初始循环检测	3-6
	3.4	控制目标	3-7
		3.4.1 频率分割扫描试验	3-8
		3.4.1.1 扫描速率	3-11
		3.4.1.2 特征参数定义	3-11
		3.4.1.3 试验时间	3-11
		3.4.1.4 带宽分割定义	3-12
		3.4.1.4.1 分割数	3-12
		3.4.1.4.2 分隔频率	3-12
		3.4.1.4.3 初始化到等间隔	3-12
		3.4.2 延迟扫描试验	3-13
		3.4.2.1 扫描方向	3-16
		3.4.2.2 试验时间	3-16
		3.4.2.3 同时扫描数	3-16
		3.4.3 多点试验	3-17
		3.4.3.1 多点目标定义	3-18
		3.4.3.1.1 试验时间	3-19
	3.5	输入通道	3-20
		3.5.1 概要	3-20
		3.5.2 输入通道	3-20
	3.6	数据保存设定	3-21

目 录

	3.6.1 概要	3-21
	3.6.2 数据的保存设定	3-21
	3.7 运行状态	3-22
第4	章 补充说明	4-1
	4.1 关于错误信息	4-1
	4.2 关于计时	4-4
	4.3 设定动作	4-5
	4.4 手动操作	4-6
	4.5 额定检查	4-10

第1章 Multi-Sweep Sine

1.1 概要

K2/Multi-Sweep Sine 为 K2/Sine 的选项。

Multi-Sweep Sine 试验,以缩短 Sine 试验的试验时间为主要目的,可同时执行多个不同的扫描试验。该应用软件具有以下 3 个试验类别。

(a) 频率分割扫描

将目标参数文件的频率带宽均等分割,并同时进行各带宽的扫描试验。以下表示 4 分割的示例。这种情况时, 在 4 个区间同时进行扫描试验,所以,试验时间为一般的 Sine 试验的 1/4。

(b) 延迟扫描

将相同目标参数文件的扫描试验分成一定的时间间隔进行多次实施的试验。下图为时间和频率之间关系的示意。标准 Sine 试验的情况时,像实线一样扫描结束后开始下一个扫描,但这种试验类型如虚线所示,通过一定时间的间隔后连续开始扫描试验,可同时进行多个扫描。

(c) 多点

通过多个固定的频率同时进行加振的试验。是在标准 Sine 的定点试验中,对各要素同时执行。

1.2 启动方法

K2/Multi-Sweep Sine 与一般的选项不同,是作为一个应用软件而存在。请注意它与一般的 K2/Sine 不同, 而是成为一个应用软件。

启动 K2/Multi-Sweep Sine 时,请双击以下的"MULTISWEEPSINE"图标。打开 K2/Multi-Sweep Sine 的窗口。

🙀 K2/MultiSweepSine	
文件(F) 试验定义(T) 运行操作(P) 编辑(E) 表示(V) 窗口(W) 选项(O) 帮助(H)	
频率 目标 响应 驱动 试验持续时间 振动次数 Drive Limit Alarm	Abort ECO
NUM 2013	\$/10/28 12:40:38

1.3 基本操作体系

启动后,Multi-Sweep Sine 也是使用键盘和鼠标操作。起动本应用软件后,下图所示的窗口就会打开。 菜单栏里显示着本应用软件的所有菜单名。点击各菜单名后菜单就会打开,列出一览能使用的指令。 各工具栏里用图标显示着菜单中经常使用的指令。点击图标后就会执行对应的指令或者与指令对应的对话 框打开。

状况栏里显示着 K2 控制器的动作状况。

在运行状态面板中,显示加振试验的状况。与通常的 Sine 不同,由于 Multi-Sweep Sine 控制多个正弦波,每个正弦波以标签形式表示。

Multi-Sweep Sine 窗口

1.4 试验文件

Multi-Sweep Sine 中也将试验运行中所需要的信息保存在所规定的被称为"试验文件"的文件之中。 试验文件可分为以下几种。

必须使用的试验文件

- 试验定义文件:频率分割扫描(*.fds2), 延迟扫描(*.tis2),
 - 多点(*.msp2)
- •图表数据文件: (*.vdf2)
- •环境设定文件

(I/O 模块构成信息、试验系统信息、输入环境信息): SystemInfo.dat2

备注 1)保存在;系统盘\IMV\K2_2nd,禁止删除。

根据需要生成的试验文件

•注册图表颜色设定文件时所生成的文件: (*.gci2)

1.5 设定项目

Multi-Sweep Sine 试验的各试验类别如下所示。仅目标设定为各自固有的项目,其他为相同设定内容。此外,很多内容与一般的 Sine 中所使用的内容重复。有关详情请参照"第3章 试验的定义"。

试验类别 设定信息	频率分割扫描	延迟扫描	多点
(1) I/O 模块构成	0	0	0
(2) 试验系统信息	0	0	0
(3) 基本·控制条件	0	0	0
(4) 试验系统设定	0	0	0
(5) 频率分割扫描目标	0	_	_
(6) 延迟扫描目标	—	0	—
(7) 多点目标	_	_	0
(8) 输入通道	0	0	0
(9) 数据保存设定	\triangle	\bigtriangleup	\triangle

Table.1-1 试验类别和定义的信息

定义完毕的一组"试验"信息,可作为所规定形式文件"试验文件"进行保存。

一旦将所定义的"试验"信息作为"试验文件"保存时,只要加载该文件便可进行试验。

第2章 基本操作例

2.1 频率分割扫描

<例题>

进行以下的频率分割扫描试验。

[目标谱]

<操作顺序>

<Step1>

点击「新建」按钮。

<Step2>

在试验类别中选择「频率分割扫描」。

<Step3>试验系统信息选择

选择「试验系统信息」。

风短突别远挥	8 3	
测验类别	1	
◎ 频率分割扫描	16	
◎ 延迟扫描		
◎ 多点		
试验系统信息 Test		
■ 輸入环境信息选择		
■ 输入环境信息选择 IMVTEST		, ë
■ 輸入环境信息选择 IMVTEST		, ë

<Step4>

选择「输入通道信息」。

式验类别选择	? <mark></mark>	
测验类别		
◎ 频率分割扫描		
◎ 延迟扫描		
◎ 多点		
试验系统信息		
Test		
-		
🗹 输入环境信息选择		
IMVIEST		ſ
		G
70	The sold	

<Step5>

点击「确定」按钮。

********	1022		
测验类别			
◉ 频率分割扫描			
◎ 延迟扫描			
◎ 多点			
试验系统信息			
Test			
☑ 输入环境信息选择		1. The second	
☑ 输入环境信息选择			*
☑ 输入环境信息选择			
☑ 输入环境信息选择			
☑ 输入环境信息选择 IMVTEST			*

<Step6>

<Step7>

「基本·控制条件」打开。点击「确定」按钮。

基本·控制条件				? <mark>×</mark>
控制对象				确定
◙ 加速度	m/s²			取消
◎ 速度	cm/s	*		
🔘 位移	mm	•		参照
◎ 失真	μ			设置
最高参考频率		5000.00	•	
�� 值振幅推定		跟踪	-	
不检		标准	•	
衡化模式		标准	•	〔详细设定(E)
輸出 开始/停止	过渡时间	标准	•	[详细设定(S)]

<Step8>

<Step9>

「试验系统设定」打开。点击「确定」按钮。

初始輸出电压	30.0 👘 mV 0-p		
☑最大驱动电压	10000.0 mV 0-p		取消
初始环检的运行 频率	— — —	× %	™ 0-p
检测基准			
环境噪音上限	👷 🕺 🦏 响应线性检测		× %
	◎加速度 ○速度 ○位移		

<Step10>

<Step11>

「参数文件类别」打开。选择「简单定义(仅制定级别和频率范围)」,点击「下一步」按钮。

<Step12>

「参数文件」打开。在频率范围的低频端中输入「20[Hz]」,高频端中输入「2000[Hz]」。

<Step13>

确认已选择加速度的复选框,输入「20[m/s²]」。

<Step14>

选择位移的复选框,输入「1[mm]」,点击「确定」按钮。

<Step15>

「容差定义」打开。点击「确定」按钮。

<Step16>

「带宽分割频率指定」打开。在「分割数」中选择「4」,点击「确定」按钮。

<Step17>

「频率分割扫描目标」打开。为了将扫描速率设定为1[octave/min]而输入「1」。为了进行往返扫描,选择「上扫往返」。

<Step18>

试验时间选择「按往返扫描次数指定」,作为其次数而设定「32[double-sweep]」。

扫描速率 1.0 → octave/min → 100.0 m/s² 1.6611 min/single-sweep 最高频率固定扫描 折返终止时间 0:00:00 → 试验时间 按往返扫描次数指定 →	
1.6611 min/single-sweep □ 最高频率固定扫描 折返终止时间 0:00:00 ◆ 10.0	
 □ 最高频率固定扫描 折返终止时间 0:00:00 ♀ 10.0 10.0 	
折返终止时间 0:00:00 ♀ 10.0 10.0 10.0	
10.0 10.0 10.0	
[11] 短时间 按注述扫描/人数归正 ▼	
32 🚔 double-sweep	
参数文件定义(P) 容差定义(T)	
参数文件再定义 (%) 帯宽分割定义 (%) 1.0 </td <td>2000.</td>	2000.

<Step19>

点击「确定」按钮。

最大加速度	80.0 m/s²0-p	● ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
最大速度	15.0532 cm/s 0-p	取消
最大位移	1.2832 mm _{p-p}	详细定义
目标分割带宽		参照
1 20.00	∼ 63.25 Hz	设置
2 63.25	~ 200.00 Нz	
3 200.00	∼ 632.46 Hz	
4 632.4E	o ∼ 2000.00 Hz	
2		

<Step20>

<Step21>

「输入通道匹配」打开。选择「ch1」,设定为「控制」。相同的,选择「ch2」,并选择「监测」。

<Step22> 点击「确定」按钮。

輸入通道匹配 ? X 分配 No. 通道名 输入灵敏度 输入类型 极性 类别 监测 限制 添加(A)... 电荷输入 (1 mV/pC) 000-Ch2 3.0 pC/(m/s²) 正 监测 2 ch2 変更(C)... 删除(0) O 0 控制 -更新TEDS(T) 确定 输入灵敏度读取 参照 设置 取消

<Step23>

就这样, 定义完成了。

<试验的保存>

<Step1>

点击「保存定义」按钮。

<Step2>

输入文件名,点击「保存」按钮。

<试验的运行>

<Step1>

点击「开始运行」按钮。从试验定义模式切换到试验运行模式。

<Step2>

点击「试验开始」按钮。

按下「试验开始」按钮后,自动进行初始循环检测(设定定义时)、初始测定、初始均衡化,并通过初始 试验量级(该示例为 0[dB])进行试验。

			Č.	X	
🙀 C:\Use	ers\Virtual-Win7-Cl	HINESE\Documents	Test2013.fds2 - K2/MultiSweepSine		
文件(F)	试验定义(T) 运行	曼作(P) 编辑(E) 表	示(V) 窗口(W) 选项(O) 帮助(H)	<u>×</u>	
		<u>h</u>	🛠 😼 🛃 🛠		
Sweep	1 Sweep 2 Sw	veep 3 Sweep 4			
频率	目标	响应	驱动 试验持续时间 振动次数	Drive Limi	it Alarm Abort ECO
20.	00 1.0 Hz mm p-p	0.0 mm p-p	0.0 0:00:00 0 mV 0-p cycle	0 0	
	目标·响应图	形运行状态			
	运行状态				X N
	2012/10/22 14	00118			
	2013/10/28 14:	:00:13			
	试验开始等待				
		0.00.00			
	加強的問	0:00:00 Fta	1 / 22 doublessman		里级
	11111日本	רנ⊥. זעת 0.0 (+)	1 / 32 double sweep		0.00
	M#18-6/11	(-) 0.0 mV			10
	手动操作	0.00 dB			db
	实时处理负载率	≥ 0.00 %			
					出版 一 增減值
OFF		频率(Hz)	目标	响应	1.00
	Sweep 1	20.00	1.0 mm p-p	0.0 mm p-p	
	Sweep 2	63.25	20.0 m/s ² 0-p	0.0 m/s ² 0-p	
	Sweep 3	200.00	20.0 m/s² 0-p	0.0 m/s ² 0-p	
	Sweep 4	632.46	20.0 m/s² 0-p	0.0 m/s ² 0-p	
		ባለም በ (መለ)	据5月)/尔墨尔		v .
	•		III		•
· · · · · · · · · · · · · · · · · · ·	🗄 🛄 🖻 🖻 🗙				
				NUM	2013/10/28 14:00:13

该示例中,将在1个框中各频率带宽的4个扫描分别用不同的图表表示。除此之外,还可在1个框中用图 表表示1个扫描,也可在1个图表中用图表表示4个扫描。

<Step3>

初始均衡化结束后,通过初始试验量级(该示例为0dB)进行试验,并开始正弦波的扫描 试验持续时间的计时(含振动次数),与扫描一起开始。但是,仅在试验量级为0dB时进行计时。

🔛 C:\Use	ers\Virtual-Win7-CH	IINESE\Document	s\Test2013.fds2 - K2/MultiSweepSine		
文件(E)	试验定义(工) 运行措	操作(P) 编辑(E)	表示(V) 窗口(W) 选项(O) 帮助(H)		
Sweep	1 Sweep 2 Sw	eep 3 Sweep 4			
频率	目标	响应	驱动 试验持续时间 振动次数	Drive Limit	t Alarm Abort ECO
27.	01 1.0	1.0 mm p-p	44.3 0:00:26 329		
	日标,响应图用	12 运行状态			
	日本・朝辺国が				
\sim	JE1J 1/ jes	00.40			
	2013/10/28 14:	02:40			
	以短中				
1 martine	历经时间	0:00:26			田山 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
E D	扫描信息	上扫	1 / 32 double-sweep		±4%
	峰值电压	(+) 207.0 mV			0.00
	二二	(−) −205.7 mV			dB
	于初照作 立时协理吊裁滚	0.00 dB 3.08 %			
	X*1/2/1/				「 増減値
OFF		频率(Hz)	目标	响应	1.00
	Sweep 1	27.01	1.0 mm p-p	1.0 mm p-p	
	Sweep 2	85.46	20.0 m/s² 0-p	20.0911 m/s ² 0-p	
	Sweep 3	270.23	20.0 m/s² 0-p	20.0031 m/s ² 0-p	
	Sweep 4	855.26	20.0 m/s ² 0-p	19.9498 m/s² 0-p	
		3版記力 (mV)	振动次数		*
	*		m		F
	🗏 🛄 F 🖻 🕱				
试验中				NUM	2013/10/28 14:02:13

<Step4>

所定的试验时间一完,就结束试验。 点击「运行结束」按钮后,返回试验定义模式。

				Ë	
Test20	13.fds2 - K2/MultiSwe	eepSine		/	
文件(F)	试验定义(T) 运行操作	:(P) 编辑(E) 表示(V) 窗口(V	V) 选项(O) 帮助(<u>H)</u>		
		1			
Sweep	Sweep 2 Swee	p 3 Sweep 4	\Box		
频率	目标	响应 驱动 试	合持续时间 振动次数	Drive Limit	Alarm Abort ECO
20.	00 1.0 Hz mm p-p	1.0022 24.0 1 mm p-p mV 0-p	:46:41 130 kcycle	00	000
	目标・响应图形	运行状态			_
	控制目标·响应				
	100.0 ^{m/s²}	响应・目标(扫描)			Hz Hz 4170 H2
FL	10.0			中断上限	
	1.0 m/s ²			中断下限	0.00
	10.0			警告下限	dB
	1.0				
	100.0 ^{m/s²}	响应・目标(扫描3)		增减值
OFF	10.0				
	1.0	响应・目标 (扫描4			
	100.0				
	1.0				
	20.0 Hz	100.0	1000.0 2000.0		
	I II F 🖻 🗙				
				NUM	2013/10/29 6:44:25

2.2 延迟扫描

<例题>

进行以下的延迟扫描试验。

[目标谱]

[延迟扫描] 同时扫描数:4

[试验时间]
扫描速率: 1[octave/min]
单程扫描数: 8[single-sweep]
扫描开始频率: 20[Hz]

[所使用的传感器等的信息] 使用两个圧电型的加速度传感器。 一个作控制用,另一个作监测用。 ch1.: 控制用、灵敏度 3pC/(m/s²) ch2.: 监测用、灵敏度 3pC/(m/s²) 但是,这些信息已经全部设置在输入环境信息中(这里是「IMVTEST」)。 试验系统的额定值等的信息也已经设置在试验系统信息中(这里是「Test」)。 <操作顺序>

<Step1>

点击「新建」按钮。

<Step2>

在试验类别中选择「延迟扫描」。

<Step3>试验系统信息选择

选择「试验系统信息」,并选择「输入通道信息」。 点击「确定」按钮。

<Step4>

点击「下一步的定义」按钮。

<Step5>

「基本·控制条件」打开。点击「确定」按钮。

基本·控制条件				2	E
控制对象				确定	
◙ 加速度	m/s²			取消	
◎ 速度	cm/s	•			
◎ 位移	mm	•		参照	
◎ 失真	μ			していていていていていていていていていています。 しんしょう しんしょ しんしょ	
最高参考频率		5000.00	•		
峰值振幅推定		跟踪	×		
环检		标准	•		
均衡化模式		标准	•	〔详细设定(E)	
输出 开始/停止	过渡时间	标准	•	↓ 【详细设定(S)	

<Step6>

点击「下一步的定义」按钮。

<Step7>

「试验系统设定」打开。点击「确定」按钮。

式验系统设定			8 X
初始输出电压	30.0 💭 mV 0-p		确定
🗹 最大驱动电压	10000.0 📩 mV 0-p		取消
🗌 初始环检的运行			
频率	Hz 输出电压	× %	mV 0-p
检测基准	x		
环境噪音上限	🛛 💭 🕺 ท่应线性检测	× %	
一检测响应上限值	◎ 加速度 ● 速度 ● 位移		
× ×			
			•
		× C	Ъ
		l	J

<Step8>

点击「下一步的定义」按钮。

<Step9>

「参数文件类别」打开。选择「详细定义(交越点)」•「恒值型」,点击「下一步」按钮。

<Step12>

「参数文件定义」打开。在交越点的频率中输入「20[Hz]」,在类别中选择「位移」,在量级中输入 「1[mm]」,并点击「追加」按钮。

<Step13>

点击「CALC」按钮,以计算加速度为 20[m/s²]、位移为 1[mm]的交越点频率。

数文件定义			? <mark>×</mark>
频率(Hz) 20.00	<mark>單级</mark> 1.0 mm p-p		
		(冊//余 ①)	
交越点		1	
频率	20.00 Hz	— B/0mm	
● 加速度 重级	011£15	0 H230DI	
	CALC (X)	自加(A) [修改(C)]	确定 取消
<Step14>

「固定」的单选按钮选择为「位移」,并确认该值为「1[mm]」。接着在加速度的值中输入 「20[m/s²]」,并点击「确定」按钮。

<Step15>

如下显示「参数文件定义」,加速度为20[m/s²],且位移为1[mm]的交越点频率变为31.83[Hz]。

参数文件定义	8
频率(Hz) <u>量级</u> 20.00 1.0 m/s ² 0-p	
(删除(0))	
交越点 频率 31.83 🚔 Hz	
 ○ 加速度 ○ 应移 ○ 最终BP 	
里級 1.0 Ţum p−p CALC (X) 追加 (A) 修改 (C)	确定 取消
*	
\cup	

<Step16>

将类别变更到「加速度」,并点击「追加」按钮。

》数 文件定义	?
频率(Hz) <u>單级</u> 20.00 1.0 mm p-p 31.83 20.0 m/s ² 0-p	100.0 ^{m/s²}
交越点	10.0
频率 31.83 🐳 Hz ● 加速度 ● 速度 ● 位移 ● 最终BP	1.0 20.0 Hz 25.0 31.8310
CALC (X) 追加(A) 修改(C)	· 确定 · 取消
	×

<Step17>

在交越点的频率中输入「2000[Hz]」,在类别中选择「最终 BP」,并点击「追加」按钮。之后,点击 「确定」按钮。

<Step18>

「容差定义」打开。点击「确定」按钮。

容差定义		-? - ?
中断检测 上限里级 6.00 🚔 dB 了下限里级 -6.00 🚔 dB 了对称上限和下限	 ▼ 警告检测 3.00 → dB -3.00 → dB 	
		* `

<Step19>

「延迟扫描目标定义」打开。确认选择了「上扫单程」后,为了将扫描速率设定为1[octave/min]而输入「1」。

扫描模式 对数扫描 👻 上扫单程	•			
扫描速率 1.0 🚔 octave/min 🕇	•	100.0 ^{m/s²}		
6.6439 min/single-sweep				
同时扫描称	_			
		10.0		
风级时间 按单程扫描/次数指定 ▼		4		
1 🚔 single-sweep			Q + + + Q + + Q + + Q + + Q + + + + + +	·····
参数文件定义 健) 容差定义 (𝔅)				**********
参数文件再定义 (8)		20.0 Hz	100.0	2000.0

	\square			

<Step20>

在同时扫描数中输入「4」,在扫描数中设定「8[single-sweep]」。

<Step21>

点击「确定」按钮。

<Step22>

点击「下一步的定义」按钮。

<Step23>

「输入通道匹配」打开。选择「ch1」,并设定到「控制」。相同的,选择「ch2」,并选择「监测」。

<Step24>

点击「确定」按钮。

о.	通道名	分配	输入灵敏度	输入类型	极性	类别	监测	限制	添加(A)
2	ch2	000-Ch2	3.0 pC/(m/s²)	电荷输入 (1 m∀/pC)	Ē	监测			変更 (C) ♥除 (D) ● ● ● ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
				〔输〕	灵敏度读	取] []	参照] [] 设置	

<Step25>

就这样,定义完成了。

文件(F) 试验定义(T) 运行操作(P) 編編(E) 表示(V) 窗口(W) 选项(O) 帮助(H) Image: Comparison of the state	
频率 目标 响应 驱动 试验持续时间 振动次数 Drive Limit Alarm	Abort
试验定义目标图形	
	15.15.22

<试验的保存>

<Step1>

点击「保存定义」按钮。

<Step2>

输入文件名,点击「保存」按钮。

論 另仔为						
保存在(I):	📗 我的文档		¥	0 Ø E	* 🛄 🕶	
最近访问的位置	K2Fatigue P My Music My Pictures My Videos	o 2008				
桌面	퉬 Visual Studi	o 2010				
は い 単 前 に 一 二 一 二 一 二 一 二 一 二 一 二 一 二 一 二 一 二 一 一 一 一 一 一 一 一 一 一 一 一 一						
网络	文件名 (8): 保存类型 (7):	Test2013 Time interval t	est definitio	n file(*. ·	 保存 取 	:(5) 消
	注释					

<试验的运行>

<Step1>

点击「开始运行」按钮。从试验定义模式切换到试验运行模式。

<Step2>

点击「试验开始」按钮。

点击「试验开始」按钮后,自动进行初始循环检测(设定定义时)、初始测定、初始均衡化,并通过初始 试验量级(该示例为0[dB])进行试验。

				*	Ë,					
Test20	113 tic2 . K2/MultiS	weenSine								572
文件(F)	试验定义(T) 运行措	weepsine 鼻作(P) 编辑(E) 表	長示(V) 窗[](W) 洗项(O) 帮	助(H)	4				
		<u>h</u>	1		×			H		
Sweep	1 Sweep 2 Sw	reep 3 Sweep 4	1							
频率	目标	响应	驱动	试验持续时间 振道	动次数	D	rive Limit	Alarm	h Abort EC	:0
20.	00 1.0 Hz mm p-p	0.0 mm p-p	0.0 mV 0-p	0:00:00	0 cycle	1	0 0	C		
1	目标·响应图于	18 运行状态								-
	运行状态							x		
	2013/10/28 15.	46.03						*		
1	1013/10/28 13. 试验开始等待	40.00						III		
	历经时间	0:00:00							重级	
15 -	扫描信息	上扫							0	00
Anna Anna Anna Anna Anna Anna Anna Anna	峰值电压	(+) 0.0 mV							ν.	00
		(-) 0.0 mV								dB
	于列操作 文时协理合 批 索	0.00 dB								
	大时处理风飘平	0.00 /							2 增减值	1
OEE		55家(Hz)		日标		临忘				.00
eur	Sweep 1	20.00		ים-ס ס-ס 1.0 הנו הם		0.0 mm	р-р			
	Sweep 2	20.00		1.0 mm p-p		0.0 mm	p-p			
	Sweep 3	20.00		1.0 mm p-p		0.0 mm	ртр			
	Sweep 4	20.00		1.0 mm p-p		0.0 mm	р-р			
		7525 (**)				+	Ale he	+		
	•	Suzz/I(mV)		- 11〒五川/八省∜		*=++用/次	3 7	•		
]								
试验开始等							NUM	20:	13/10/28 15:46:	03
				-				0.000		

该示例中,将在1个框中各频率带宽的4个扫描分别用不同的图表表示。除此之外,还可在1个框中用图 表表示1个扫描,也可在1个图表中用图表表示4个扫描。 <Step3>

初始均衡化结束后,通过初始试验量级(该示例为0dB)进行试验,从第1个扫描开始,依次开始正弦波的扫描。

试验持续时间的计时与第1个扫描同时开始,并持续到最后的扫描结束为止。但是,<u>仅在</u>试验量级<u>为0dB</u>时进行计时。

此外,振动次数通过各自的扫描而被计数。

Tort20	12 the 2 K2/Multic	veenSine			
☆(牛(F)	13.052 - K2/Multi30	weepsine 副作(D) 编唱(F) 耳			
~(1)	WARKEX(I) ASTING	eiF(r) and-dat(L) A			
		495			
Sweep	1 Sweep 2 Sw	eep 3 Sweep 4			
频率	目标	响应	驱动 试验持续时间 振动次数	Drive Limit	Alarm Abort ECO
37.	76 20.0 Hz m/s ² 0-p	20.0062 π/s² о-р	60.0 0:00:55 831 mV o-p cycle	0 0	0000
	日标·响应图	12 运行状态			
	百份 (A/Z团) 法行业太				
	Jen Jakas				
1000	2013/10/28 15:	48:11			
17/	试验中				= 🗾 📐
					HZ HZ
	历经时间	0:00:55			里级
	白描信息	上扫			0.00
And Address of the Ad	峰值电压	(+) 60.0 mV			0.00
		(-) -60.0 mV			dB
	于动操作。	0.00 dB			
1	关时知道贝科学	1.00 %			一般减值
MER		此石(字) (11-)	日年	吃吃	
UFF	Swaap 1	少興(4年)(日乙)		비미 <u>))</u> 20,0062, 파 (-2,0	
	Sweep 2	20.00	20.0 m/s= 0-p	20.0002 m/S* 0-p	
	Sweep 2 Sweep 3	20.00	1.0 mm p-p	0.0 mm p-p 0.0 mm p-p	
	Sween 4	20.00	1.0 mm n-n	0.0 mm p-p	
	2		The same h h	or o man p p	
		ዓል፰ከ (mV)	振动次教	扫描次数	*
	•		III		<u>•</u>
	🛛 🔟 🗹 🖾				
试验中				NUM	2013/10/28 15:47:20

<Step4>

所定的试验时间一完,就结束试验。

点击「运行结束」按钮后,返回试验定义模式。

				Ë	
Test2	013 tis2 - K2/MultiSwee	nçine	/		- I Star
文件(F)	试验定义(T) 运行操作(P) 编辑(E) 表示(V) 窗口(W) 选项	〔(O) 帮助(H)		
		🐴 🦈 🧔			
Sweep	1 Sweep 2 Sweep	3 Sweep 4			
频率	目标	响应 驱动 试验持续时	间振动次数	Drive Limit A	Alarm Abort ECO
2000.	00 20.0 20 Нz m/s² 0-р	0.0122 60.0 0:58:4 m/s° 0-p mV 0-p	1 730 kcycle	0 0	000
	目标·响应图形	运行状态			
	控制目标·响应			X	
		🖀 😫 😭 😭 🔤 🔟 🔝			
1	100.0 ^{m/s²}	响应·目标(扫描1)			
	10.0			中断上限	重级
IS-P	1.0			中断下限	0.00
	100.0 ^{m/ s*}	响应 日标 (归抽4)		│ ●●●●● 警告 上限	10
	10.0				
	1.0 m/s ²	响应・目标(扫描3)			一般成值
OFF	100.0				
CIT	10.0				
	100 0 m/s ²	响应・目标(扫描4)			
	10.0				
	1.0				
	20. 0 Hz	100.0	1000.0 2000.0		
				d:	
试验完成	」 (试验时间满了)			NUM	2013/10/28 16:46:48

2.3 多点

<例题> 进行以下的多点试验。

[目标谱]

以下列的频率与量级的组合为定点。这些要素同时进行试验。

No	频率	量级
1	100[Hz]	$30[m/s^2 0-p]$
2	20[Hz]	5[mm p-p]
3	200[Hz]	1[cm/s 0-p]

[试验时间]

试验时间: 1[hour]

[所使用的传感器等的信息]

使用两个圧电型的加速度传感器。一个作控制用,另一个作监测用。

ch1.: 控制用、灵敏度 3[pC/(m/s²)]

ch2.: 监测用、灵敏度 3[pC/(m/s²)]

但是,这些信息已经全部设置在输入环境信息中(这里是「IMVTEST」)。

加振系统的额定值等的信息也已经设置在试验系统信息中(这里是「Test」)。

<操作顺序>

<Step1>

点击「新建」按钮。

<Step2>

在试验类别中选择「多点」。

<Step3>试验系统信息选择

选择「试验系统信息」,并选择「输入通道信息」。 点击「确定」按钮。

<Step4>

点击「下一步的定义」按钮。

<Step5>

「基本·控制条件」打开。点击「确定」按钮。

基本·控制条件					8	×	***
控制对象					确定		<mark>_</mark> _
◙ 加速度	m/s²				取消		
◎ 速度	cm/s	*					
◎ 位移	mm	•			参照		
◎ 失真	μ				设置		
最高参考频率		5000.00	•				
峰值振幅推定		跟踪	-				
环检		标准	•				
均衡化模式		标准	•	详细i	殳定(E)		
输出 开始/停止	过渡时间	标准	•	详细词			

<Step6>

点击「下一步的定义」按钮。

<Step7>

「试验系统设定」打开。点击「确定」按钮。

		? <mark>-</mark> ×
30.0 💭 mV 0-p		确定
10000.0 📩 mV 0-p		取消
	× %	mV 0-p
x		
🛛 🚽 🕺 ท่应线性检测		× %
◎ 加速度 ● 速度 ● 位移		
		م رب
	30.0 ➡ mV 0-p 10000.0 ➡ mV 0-p ➡ Hz 输出电压 ▼ ● 加速度 ● 速度 ● 位移	30.0 ♥ mV 0-p 10000.0 ♥ mV 0-p ● Hz 輸出电压 ● % ● ● w 响应线性检测 ● 加速度 ● 速度 ● 位移

<Step8>

点击「下一步的定义」按钮。

<Step9>

「多点目标定义」打开。设定第1个定点要素。在频率中输入「100[Hz]」,在类别中输入「加速度」, 在量级中输入「30[m/s²]」,并点击「添加」按钮。

多点目标定义 No. 频率 量级 中断上限 中断下限 警告上限 警告下限 1 100.00 Hz 3.0 m/s² 0 - p 6.00 dB -6.00 dB 3.00 dB -3.00 dB	最大加速度 30.0 m/ 最大速度 4.7746 最大位移 0.1520
频率 100.00 ↓ Iz CALC (X) ● 加速度 ● 速度 ● 位移 30.0 ↓ m/s ² (-p 添加(A)) 中断 上限 6.00 ↓ dB 弊告 上限 3.00 ↓ dB 插入 (1) 下限 -6.00 ↓ dB 下限 -3.00 ↓ dB 修改(C) 试验时间 无限 ↓ ⑧ 化 10 ↓ 10 ↓ 10 ↓ 10 ↓ 10 ↓ 10 ↓ 10 ↓ 10	 ✓ 警告检测 ✓ 下限值检测 CSV的读入(C)
	5

<Step10>

设定第2个定点要素。在频率中输入「20[Hz]」,在类别中选择「位移」,在量级中输入「5[mm]」,并 点击「添加」按钮。

<Step11>

设定第3个定点要素。在频率中输入「200[Hz]」,在类别中选择「速度」,在量级中输入「1[cm/s]」,并点击「添加」按钮。

<Step12>

确认在试验时间中已选择「以时间指定」,在数值中输入「1[hour]」,并点击「确定」按钮。

<Step13>

点击「下一步的定义」按钮。

<Step14>

「输入通道匹配」打开。选择「ch1」,设定到「控制」。相同的,选择「ch2」,并选择「监测」。

<Step16>

就这样, 定义完成了。

<试验的保存>

<Step1>

点击「保存定义」按钮。

<Step2>

输入文件名,点击「保存」按钮。

保存在(I):	📗 我的文档		•	0 🖉 🖻 [
 最近访问的位置 桌面 桌面 库 计算机 	K2Fatigue Ny Music My Picture My Video Visual Stu	Projects es s dio 2008 dio 2010			
网络	文件名():	Test2013			保存(S)
	保存类型(T):	Multi spot tes	t definition f	ile(*.msp 💌	取消
	注释				

<试验的运行>

<Step1>

点击「开始运行」按钮。从试验定义模式切换到试验运行模式。

				Ë		
C:\Users\Vir	tual-Win7-CHINESE\Document	s\Test2013.msp2 -	K2/MultiSweepSine			
文件(F) 试验定		表示(V) 窗口(W)				
频率 Hz 试验	目标响应	驱动 试验持续 mV 0-p	熱时间 振动次数		Drive Limit	Alarm Abort
	金定义				×	
	式验定义信息 J/O 模块构成 试验系统信息 基本·控制条件	试验时间 以时间指定 手动操作		1:00:00 不运行		
	试验系统设定 多点目标 動入通道] 数据保存设定	No. 频率(Hz) 1 100.00 2 20.00 3 200.00	等级 30.0 m/s² 0-p 5.0 mm p-p 1.0 cm/s 0-p	中断上限 6.00 dB 6.00 dB 6.00 dB	中断下限 -6.00 æ -6.00 æ -6.00 æ	
OFF		最大加速度 8 最大速度 3 最大位移 5	2.0448 m/s² 0-p 7.1906 cm/s 0-p .1679 mm p-p			
		< [III		•	
			(
试验定义结束 可	以使用				NUM 201	3/10/28 16:18:09

<Step2>

点击「试验开始」按钮。

点击「试验开始」按钮后,则自动进行初始循环检测(设定定义时)、初始测定、初始均衡化,并通过初期试验量级(该示例为0[dB])进行试验。

<Step3>

初始均衡化结束后,通过初始试验量级(该示例为0dB)进行加振,并通过所有的定点要素同时开始试验。

试验持续时间的计时,在所有定点要素的初始均衡化之后开始。但是,<u>仅</u>试验量级<u>为0dB时进行计时。</u>此外,振动次数通过各定点进行计数。

<Step4>

所定的试验时间一完,就结束试验。 点击「运行结束」按钮后,返回试验定义模式。

第3章 试验的定义

3.1 概要

本系统把执行某个试验所必要的一套信息叫做「试验」。

为了执行某个试验,有必要首先定义为执行该试验所做的「试验」。

Multi-Sweep Sine 的「试验」以通常的 Sine 试验为基础,控制目标相关的项目之外原则上为相同的定义构成,所以重复的设定项目很多。

本章对与通常的 Sine 试验不同的「试验」定义的项目及进行 Multi-Sweep Sine 试验时需注意的项目进行说明。

在 Multi-Sweep Sine 的「试验」中,「频率分割扫描」、「延迟扫描」、「多点」的 3 种类的试验种类。 将各试验种类中与通常的 Sine 不同之处表示于 Table3-1。通常的 Sine 与各试验种类在定义内容方面的不 同之处,主要是"控制目标"的设定信息。其他的设定信息,各试验种类基本相同。

试验种类				
设定信息	频率分割扫描	延迟扫描	多点	
(1) I/O 模块构成	与通常 Sine 相同。			
(2) 试验系统信息	与通常 Sine 相同。			
(3) 基本·控制条件	与振幅峰值推定方式的设定有不同之处。			
(4) 试验系统设定	原则上与通常的 Sine 相同。			
(5) 控制目标	设定频率分割扫描 设定延迟扫描目 加户名		况户夕上日七	
	目标。	标。	·	
(6) 输入通道	与通常 Sine 相同。			
(7) 数据保存设定	原则上与通常的 Sine	相同。		

Table.3-1 与通常的 Sine 的不同之处

可以将定义完了的「试验」的一套信息作为所定的形式的文件「试验文件」进行收藏。

一旦所定义的「试验」的信息作为「试验文件」收藏后,只要打开那个文件试验就可以执行。

3.2 基本·控制条件

设定 K2 控制器的控制条件。

控制对象				确定
🧕 加速度	m/s²			取消
◎ 速度	cm/s	•		
◎ 位移	π.m.	•		参照
◎ 失真	μ			していていていていていていていていていています。
最高参考频率		5000.00		
峰值振幅推定		跟踪	Ŧ	
环检		标准	•	
均衡化模式		标准	•	[详细设定(E)
输出 开始/停止	过渡时间	标准	•	详细设定(S)

与通常的 Sine 不同,在 Multi-Sweep Sine 中**振幅峰值推定固定为「跟踪」。**此外,对各项目运行 Multi-Sweep Sine 时需要注意的项目进行说明。

关于各设定项目的详情,请参照 K2/Sine 的使用说明书「4.2 基本 · 控制条件」。

3.2.1 最高参考频率

(1) 意义

设定在输入通道所观测的频率的上限值。

与通常的 Sine 相比,为了控制多个扫描 Multi-Sweep Sine 的计算负荷变大。

所以,由于计算负荷大而难以试验时,请在可能的范围内将该最高参考频率设定为小的数值。

3.2.2 峰值振幅推定

(1) 意义

控制通道响应信号波形的振幅(峰值)计算方式,在 Multi-Sweep Sine 中固定为「跟踪」方式。

跟踪方式从响应信号波形抽出基本波成分,并以该振幅(峰值)作为响应信号的振幅推定值。在本 系统中,基本波形成分的抽出机构针对响应信号,根据此时驱动信号频率实时进行傅立叶积分演算 而得以实现,与使用模拟式跟踪滤波器的方式相比,其精度更高。

在 Multi-Sweep Sine 中是对复数正弦波同时加振,如上所述,可通过跟踪方式推定任意频率的峰值, 所以,可控制具有不同频率的各正弦波。

但是,这里的振幅峰值计算方式的设定,是为了计算控制响应的各控制通道的相关响应,与通常的 Sine 相同,针对各输入通道的监视器的振幅峰值计算方式的设定,可在各输入通道任意进行(参照 输入通道匹配)

3.2.3 循环检测

(1) 意义

设定有关循环检测功能所引发的控制环的异常确认的运行条件。

在 Multi-Sweep Sine 中,循环检测也是通过「初始循环检测」和「控制时循环检测」的两种方法实施的。此外,原则上以控制通道作为对象,但监视监视器级别的通道也为实施对象。

与通常的 Sine 相同,本项目将循环检测实施时的异常检测判断标准,从「严格」、「标准」、「宽松」的3级别中选择设定。

除了测试体的特性之外,在快的扫描速率设定、同时加振的正弦波数多的设定中,「标准」的设定 总是停止时,请使用「宽松」的设定。

在 Multi-Sweep Sine 中,正弦波数变多则峰值的推定变难,该数值可能产生偏差的情况。而且,如果 再加上测试体的影响等则可能由于难以推定而停止。特别是在延迟扫描时有这种趋势。这种情况 时,也可能需要设定为「宽松」。

此外,即使是线性度良好的测试体,因为存在共振特性带来的频率响应变化,在正弦波扫描试验中 可能无法从本质上避免控制循环的增益变化,该变化速度也是扫描速率的函数。所以,根据快的扫 描速率设定,也可能需要设定为「宽松」,请注意。

3.2.4 均衡化模式

(1) 意义

为使响应振幅推断值与目标量级的值一致而调节驱动输出量级、进行量级控制时,设定系统内部构筑的数字反馈控制系统的响应速度的大小。

在通常的设定难以控制的情况下,本项目的设定是否合适不能靠夸夸其谈,与扫描速率的兼顾等成 为重要的因素。

Multi-Sweep Sine 也与通常的 Sine 相同,可从「快」、「标准」、「慢」的 3 种类设定项目,和可设 定任意的参数值的「数值指定」进行选择。各项目的含义及用途也与通常的 Sine 相同,原则上请选 择「标准」。

但是,由于在将复数的正弦波同时加振时推定任意频率的正弦波峰值,所以,与通常的 Sine 相比, 一般情况下长的分析时间可获得好的结果。由于这种理由,在「延迟扫描」和「多点」的 2 种类试 验类别中,控制速度变慢,但与通常的 Sine 相比,分析时间整体设定较长。

此外,正弦波数变多时,响应振幅推定值可能出现偏差,或可能在循环检测中频繁停止。这种情况时,「慢」的设定可能有效。

3.3 试验系统设定

关于控制的试验 • 输出系的设定。

试验系统设定			? <mark>*</mark>
初始輸出电压 🔽 最大驱动电压	30.0 → mV 0-p 10000.0 → mV 0-p		<u>确定</u> 取消
 初始环检的运行 频率 检测基准 	Hz 输出电压	× %	mV 0-p
环境噪音上限	🐳 🐝 响应线性检测		<u>^</u> %
	◎加速度 ○速度 ○位移		

原则上与通常的 Sine 内容相同。通常的 Sine 中所具有的部分项目被删除。

在各项目中说明了实施 Multi-Sweep Sine 时的注意事项。

关于各设定项目的详情,请参照 K2/Sine 的使用说明书「4.3 试验系统设定」。

3.3.1 初始输出电圧

(1) 意义

「初始输出电圧」是指控制执行时对试验器最初输出的电圧。Multi-Sweep Sine 在驱动停止的状态进行加振时,也总是从该驱动电压开始控制。

注)关于初始输出电圧,请设定适于所使用的试验器的值。

3.3.2 最大驱动电圧

(1) 意义

是系统能够输出的最大驱动电圧的指定。

在 Multi-Sweep Sine 中,复数正弦波的合成波作为驱动信号输出。该信号的峰值大于本指定值时则试验停止。

3.3.3 初始循环检测

(1) 概要

本系统中,作为循环检测,通过「初始循环检测」和「控制时循环检测」的两种方法实施。本项目 设定是否在控制运行开始之前实施初始循环检测。

通常情况时,请实施初始循环检测。

在 Multi-Sweep Sine 中,初始循环检测也是由以下一连串的处理构成的:环境噪音等测定后,通过 所设定的预检测电压进行循环检测后,通过所设定的频率·电压级别的试验而进行系统增益测定 等。

即使在复数的正弦波进行试验设定,初始循环检测也以与通常的 Sine 一样指定的单一频率的正弦波 实施。

在 Multi-Sweep Sine 中以下的两点与通常的 Sine 不同。请注意。

(A) 在延迟扫描试验中继续加振时,保持实施「初始循环检测」。此时,各检测参数自动如下变 化,请注意。特别是,即使已经定义本项目「频率」自动变更为扫描开始频率,「输出电压」 自动变更为「初始输出电压」,请注意。

初始循环检测的实施	ON(检测)	OFF (无检测)
频率 [Hz]	扫描开始频率	扫描开始频率
输出电压 [%]	初始输出电压	初始输出电压
检测基准	在初始循环检测中检测所定 义的值	在初始循环检测中检测所定 义的值
检测响应上限值	在初始循环检测中检测所定 义的值	无

(B)不受有无实施「初始循环检测」的影响,保持测定环境噪音。而且,在「控制时循环检测」一 开始进行检测。环境噪音的标准值实施「初始循环检测」时,为初始循环检测时所定义的值。 不实施「初始循环检测」时,根据「循环检测」的选择,从初始循环检测的3种类设定值选 择。

3.4 控制目标

本项目用于指定控制目标,据此决定试验类型。本项目的定义在各试验类别中需要固有的定义形式,各类别的定义方法不同,但以如下的标准 Sine 的试验类别作为基础,只是在该基础上加上 Multi-Sweep Sine 所需要的项目,大部分都是相同的。

Multi-Sweep Sine 的试验类别	作为基础的标准 Sine 的试验类别
频率分割扫描试验	连续扫描试验
延迟扫描试验	请参照 K2/Sine 的使用说明书「4.4.1 连续扫描试验」。
	定点试验
多点试验	请参照 K2/Sine 的使用说明书「4.4.2 定点试验」。

基本性的控制目标项目如下所示。

- •目标样式(控制目标频率和控制目标级别)
- •试验时间(加振时间)
- 停止 / 警告检测级别

在扫描试验类中,上述项目的目标样式通过参数文件定义,停止/警告检测级别通过容差定义进行设定, 试验时间通过扫描次数进行设定。定点试验类中,作为定点要素定义上述4项目。

在此作为 Multi-Sweep Sine 中必要的项目,在「频率分割扫描」试验中定义分割频率带宽的个数,在「延迟扫描」试验中定义同时扫描的个数。「多点」试验中所定义的定点要素全部同时加振,所以没有新添加的项目。

此外,通常的 Sine 中具有「驱动目标」功能,但 Multi-Sweep Sine 未支持该功能。

本项目的详情定义方法,请参照各试验种类的说明。

3.4.1 频率分割扫描试验

(1) 概要

在本项目中定义频率分割扫描试验的控制目标。

作为基础的扫描试验,在正弦波振动试验中是最一般性使用的传统试验方法,根据所设定的条件, 使频率连续发生变化而进行正弦波控制。

频率分割扫描试验的试验实施方法本身与通常的扫描试验相同,只是扫描试验为1个正弦波,对于 扫描频率,在所分割的各带宽中同时用复数正弦波进行扫描这一点上不同。

在通常的扫描试验中,将全带宽用1个正弦波进行扫描。

频率分割扫描试验的控制目标主要定义项目可分成以下4种类。

- •扫描条件 试验时间相关的项目
- 目标样式相关项目
- 控制响应的警告 / 停止检查相关的项目
- 帯宽分割定义

在扫描条件・试验时间相关的项目中,具有扫描模式、扫描方向、扫描速率、折返终止时间、试验 时间。

目标样式通过参数文件进行定义。参数文件设定全带宽。

控制响应的警告 / 停止检测通过容差进行定义。

带宽分割定义是在 Multi-Sweep Sine 中添加的项目。设定所分割的带宽。
这些控制目标在以下的对话框中进行设定。

从所设定的目标定义计算并表示最大值。 将该最大值与额定值进行比较,以判断试 验的可否。

此外,控制量设定在"加速度"、"速 度"、"位移"中的任意1项时,表示针 对这3项物理量的最大值。

分割目标参数文件后的带宽

最大加	加速度 80.0 m/s² 0-p	确定
最大ì	速度 15.0532 cm/s 0-p	取消
最大的	位移 1.2832 mm p−p	〔详细定义 0)>>
目标	分割带宽	参照
1	$20,00\sim$ $-63,25~{\rm Hz}$	设置
2	63.25 ~ 200.00 Hz	ka santa ang s
з	200.00 \sim 632.46 Hz	
4	632.46 \sim 2000.00 Hz	

如以下所示,除了「带宽分割定义」的项目之外,原则上与通常的 Sine 的内容相同。

设定项目	与 K2/Sine 的连续扫描试验的比较				
扫描模式	与 K2/Sine 相同。请参照使用说明书「4.4.1.1」。				
扫描方向	与 K2/Sine 相同。请参照使用说明书「4.4.1.2」。				
扫描速率	原则上与 K2/Sine 相同。 请参照使用说明书「4.4.1.3」。				
最高频率固定扫描	与 K2/Sine 相同。请参照使用说明书「4.4.1.4」。				
折返终止时间	与 K2/Sine 相同。请参照使用说明书「4.4.1.5」。				
试验时间	原则上与 K2/Sine 相同。 请参照使用说明书「4.4.1.8」。				
参数文件定义	与 K2/Sine 相同。请参照使用说明书「4.4.1.6」及「4.4.4 参数文件定义」。				
容差定义	与 K2/Sine 相同。请参照使用说明书「4.4.1.7」及「4.4.5 公差定义」。				
带宽分割定义	新添加的项目。				

3.4.1.1 扫描速率

(1) 概要

在 Multi-Sweep Sine 中,扫描速率的指定方法也有指定1扫描所需要的时间和指定扫描速度的两种,该指定单位如下所示与通常的 Sine 相同。

扫描速度的指定方式	对数扫描	直线扫描
(a) 指定1扫描所需要的时间	min / Single-Sweep	min / Single-Sweep
(b) 指定扫描速度	octave/min	Hz/sec

频率分割扫描时,通过在此设定的扫描速度实施各带宽的扫描。在此也可设想各带宽幅度不同的情况,但根据所指定的方式,扫描速度和1扫描所需要的时间具有如下所示的关系。

(a) 指定1扫描所需要的时间

适用针对带宽幅度最宽的扫描所设定的时间,并计算扫描速度。使用该扫描速度,进行各带宽的扫描。此外,在定义画面的设定区域的下方所显示的扫描速度(针对时间变化的频率变化的 比例)中,表示该值。

(b) 指定扫描速度

使用所设定的扫描速度,进行各带宽的扫描。此外,在所设定的速度的下方显示时间。该时间 使用针对带宽幅度最宽的扫描所设定的速度进行计算。

所以,由于各带宽幅度的不同可能出现扫描不会同时结束的情况。这种情况时,<u>请注意,折回</u> 或结束等时序,在等到所有的扫描到达折回频率后开始实施。早到达折返频率,需要等到其他 扫描到达折返频率的扫描通过折返频率继续加振。

3.4.1.2 特征参数定义

(1) 概要

进行控制目标的交越点定义。频率分割扫描的情况时,定义全带宽的交越点。

参数文件定义的详情,请参照 K2/Sine 使用说明书「4.4.4 参数文件定义」。

3.4.1.3 试验时间

(1) 概要

设定试验的运行时间。在 Multi-Sweep Sine 中,作为试验时间的设定方法,具有「按单程扫描次数指定」、「按往返扫描次数指定」、「以时间指定」、「无限」。 没有在通常的 Sine 中可选择的「以振动次数指定」。

3.4.1.4 帯宽分割定义

(1) 概要

设定在目标参数文件所定义的分割全带宽的频率。定义分割数后,自动计算分隔带宽的频率并 设定。各分隔频率可变更到任意的值。

requency divi	ision setting		? <mark>*</mark>
分割数	4 ,	- 分割类别	对数分割
扫描分隔 最小 1 2 3 最大	频率 20.00 Hz 63.25 Hz 200.00 Hz 632.46 Hz 2000.00 Hz	分隔频率 个别设5	È Hz 修改(C) 初始化到等间隔(I) →

3.4.1.4.1 分割数

(1) 意义

选择在目标参数文件定义中设定的分割频率范围的带宽数。最多可选择 16 个。 选择该值后,分隔频率根据扫描模式自动计算为等间隔并设定。

3.4.1.4.2 分隔频率

(1) 意义

是分割频率带宽的频率。该分隔频率为自动计算,但可以变更为任意的值。 请从列表中选择自动计算的频率变更到任意的值,并点击「修改」按钮。但是,为从最小 值的升序,需要为非其他频率附近的数值。

3.4.1.4.3 初始化到等间隔

(1) 意义

根据扫描模式,将所选择的通过分割数的各分隔频率自动计算为等间隔并重新设定。

3.4.2 延迟扫描试验

(1) 概要

在本项目中定义延迟扫描试验的控制目标。

延迟扫描试验也与频率分割扫描试验相同,以连续变化频率的正弦波控制的连续扫描试验为基础。 所以,延迟扫描试验的试验实施方法本身与通常的扫描试验相同,扫描试验针对在单一的正弦波进 行进行频率扫描,通过一定的时间间隔(延迟时间)开始扫描试验,与同时通过多个正弦波进行扫 描这一点上不同。

以下为表示时间月扫描频率关系的示意。标准 Sine 试验的情况时,像实线一样扫描结束后开始下一个扫描,但这种试验类型如虚线所示,通过一定时间的间隔后连续开始扫描试验,可同时进行多个扫描。

通过延迟扫描试验的控制目标的主要定义项目可分成以下4种类。

- •扫描条件 试验时间相关的项目
- 目标样式相关的项目
- 控制响应的警告 / 停止检测相关的项目
- 同时扫描数

在扫描条件・试验时间相关项目中,具有扫描模式、扫描方向、扫描速率、折返终止时间、试验时间。

目标样式通过参数文件定义。

控制响应的警告 / 停止检测通过容差进行定义。

同时扫描数是在 Multi-Sweep Sine 中添加的项目。同时设定扫描数,并根据该音数自动决定延迟的时间间隔。

这些控制目标在以下的对话框中进行设定。

从所设定的目标定义计算并表示最大值。 将该最大值与额定值进行比较,以判断试 验的可否。 此外,控制量设定在"加速度"、"速

度"、"位移"中的任意1项时,表示针 对这3项物理量的最大值。

最大速度 15.0532 cm/s 0-p 取消 最大位移 1.2832 mm p−p 详细定义	Í
最大位移 1.2832 mm p-p 详细定义	
	(0)>
参照	Į
设置	t
设置	Ľ

如下所示,除了「同时扫描数」的项目之外,原则上与通常的 Sine 的内容相同。

设定项目	与 K2/Sine 的连续扫描试验的比较
扫描模式	与 K2/Sine 相同。请参照使用说明书「4.4.1.1」。
扫描之白	仅「单程」可设定,无法进行「往返」的设定。
111111月111	请参照使用说明书「4.4.1.2」。
扫描速率	与 K2/Sine 相同。请参照使用说明书「4.4.1.3」。
计应时间	原则上与 K2/Sine 相同。
亿(3) [1]	请参照使用说明书「4.4.1.8」。
参数文件定义	与 K2/Sine 相同。请参照使用说明书「4.4.1.6」及「4.4.4 参数文件定义」。
容差定义	与 K2/Sine 相同。请参照使用说明书「4.4.1.7」及「4.4.5 容差定义」。
同时扫描数	新添加的项目。

此外,延迟扫描试验时,无法进行「最高频率固定扫描」和「折返终止时间」的设定。

3.4.2.1 扫描方向

(1) 概要

在 Multi-Sweep Sine 中,也无法进行扫描频率互相交差的试验。所以,在延迟扫描中无法进行 「往返扫描」的设定,只可进行「单程扫描」的定义。请从「上扫单程」或「逆方向单程」的 任意一项中选择。

但是,由于无法进行「往返扫描」的动作,所以在「手动操作框」中,「扫描反转」的功能也 无法使用。

3.4.2.2 试验时间

(1) 概要

设定试验的实施时间。在 Multi-Sweep Sine 中,作为试验时间的设定方法,具有「按单程扫描次数指定」、「以时间指定」、「无限」。

没有在通常的 Sine 中可选择的「按往返扫描次数指定」、「以振动次数指定」。

3.4.2.3 同时扫描数

(1) 意义

设定同时扫描数。可设定的上限为16个。

从本项目设定的扫描数和扫描速率自动计算各扫描之间间隔的延迟时间。此时,规定为延迟时间少于5秒时无法结束定义。这种情况时,为了使延迟时间达到5秒以上,请试着进行以下操作:

- •减少扫描数。
- 放慢扫描速度。

这些设定変更在执行时发生「频率重合」错误时也有效。

3.4.3 多点试验

(1) 概要

定义多点试验的控制目标。

作为基础的通常的 Sine 定点试验,是预先指定需加振的特定频率和目标值级别,依次实施所指定条件的加振的试验,在定点试验中不进行扫描。

多点试验中,在预先复数指定特定的频率和目标值级别这一点上是相同的。不同之处是,通常的定 点试验是将其依次加振,而多点试验则是将这些频率和目标组合全部同时进行加振。

多点试验的情况时,也直接设定进行加振的频率值和目标值级别。而且,该控制目标通过频率和目标级别及警告/停止级别的1组进行规定,本系统将这些称为「定点要素」。但是,由于是同时进行加振,所以不需要在各要素进行时间设定。具体上是,不需要通常的定点试验的滞留时间设定,与其他的试验相同,需要进行「试验时间」的设定,请注意。

定点要素

①定点频率

②定点目标量级

③警告 / 停止量级

由于各定点同时加振,定点要素的定义顺序变得没有意义。各定点的意义顺序与通常的定点试验相同,为任意进行。但是,无法进行其他的定点要素频率附近的带有频率的定点要素的定义,这点上 与通常的定点试验不同。

即使是多点试验,如果「定义单位」为「加速度•速度•位移」的情况时,目标级别值的单位可单 独从各定点的「加速度•速度•位移」中选择。

如果将第 n 号的定点要素用 SP#n 进行表示,则可进行以下示例的指定:在 SP#1 进行「200Hz、加速度 100m/s²」的指定,在 SP#2 进行「10Hz、位移 20mm」的指定。

定点要素可定义的最大数量是32。

但是,如上所述,多点试验也与其他的试验相同,进行「试验时间」的指定。还有,在通常的定点 试验中,可将所定义的定点系列只用设定次数进行重复,但多点试验由于将全要素同时加振,重复 功能变得没有意义,所以予以省略。

3.4.3.1 多点目标定义

(1) 意义

进行点要素的定义。定点要素最多可注册 32 个。

「试验时间」的项目有被添加或删除的项目,但原则上其含义和操作与通常的 Sine 的内容相同。

关于各项目的详情,请参照 K2/Sine 的使用说明书「4.4.2 定点试验」。

ſ	No.	频率	量级	中断上限	中断下限	警告上	限警告下限
.的 く	2	20.00 Hz 20.00 Hz 200.00 Hz	30.0 m/s² 0-p 5.0 mm p-p 1.0 cm/s 0-p	6.00 d 6.00 d 6.00 d	-6.00 dB 3 -6.00 dB 3 -6.00 dB	3,00 3,00 3,00	dB -3.00 dB dB -3.00 dB dB -3.00 dB
	频率	1	00. 00 💌 Hz				(CALC (X))
马马宁	 为Di氢 	速度 ◎ 速度	◎ 位移	-	30. 0 🚔 m/s	² 0-n	添加(A)
	中断 上	-限	6.00 🚔 dB 뵣	警告 上限	3.00	ab	[插入(I)]
	Ť	7限	-6.00 🚔 dB	下限	-3.00		修改(C)
所设定的目标	定义计算并	关表示最大	值。				
所设定的目标; 该最大值与额;	定义计算并 定值进行出	并表示最大 比较,以判	值。 新试 最 7	大加速度	82.0448 m/s 37.1906 cm/	2 0-p 5 0-p	-? 所有点的清 開除 0)
所设定的目标; 该最大值与额; 的可否。 外,控制量设;	定义计算并 定值进行比 定在"加速	注表示最大 之较,以判 速度"、"	值。 新试 速	大加速度 大速度 大位移	82.0448 m/s 37.1906 cm/ 5.1679 mm p-	°0~p s0~p p	? 所有点的清 删除 (0)
所设定的目标; 该最大值与额; 的可否。 外,控制量设; "、"位移"」 这3项物理量;	定义计算并 定值进行比 定在"加速 中的任意1 的最大值。	华表示最大 比较,以判 速度"、" 项时,表	值。 新试 速 示针	大加速度 大速度 大位移	82.0448 m/s 37.1906 cm/ 5.1679 mm p-	°0-p s0-p p	? 所有点的清晰 删除 @) ① ①
所设定的目标; 该最大值与额; 的可否。 外,控制量设; "、"位移"」 这3项物理量;	定义计算并 定值进行比 定在"加速 中的任意1 的最大值。	并表示最大 比较,以判 速度"、"	值。 新试 速 示针	大加速度 大速度 大位移	82.0448 m/s 37.1906 cm/ 5.1679 mm p-	² 0-p s 0-p p	● 所有点的清部 所有点的清部 ● 刪除 (0) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
所设定的目标; 该最大值与额; 的可否。 外,控制量设; "、"位移"」 这3项物理量)	定义计算并 定值进行比 定在"加速 中的任意1 的最大值。	F表示最大 上较,以判 速度"、" 项时,表	值。 新试 速 示针	大加速度 大速度 大位移 警告检测	82.0448 m/s 37.1906 cm/ 5.1679 mm p	°0-p s0-p p	 第 所有点的清晰 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
所设定的目标; 该最大值与额; 的可否。 外,控制量设; "、"位移"」 这3项物理量)	定义计算并 定值进行比 定在"加速 中的任意1 的最大值。	注表示最大 上较,以判 速度"、" 项时,表	值。 新试 速 示针	大加速度 大速度 大位移 警告检测 下限值检测	82.0448 m/s 37.1906 cm/ 5.1879 mm p	2 0-p 5 0-p 7	 ? 所有点的清 删除 (0) ① ① ① ② ③ ④ ③ ④ ③ ④ ③ ④ ④ ③ ○ ○
所设定的目标; 该最大值与额; 的可否。 外,控制量设; "、"位移"」 这3项物理量	定义计算并 定值进行比 定在"加速 中的任意1 的最大值。	注表示最大 之较,以判 速度"、" 项时,表:	值。 新试 速 示针	大加速度 大速度 大位移 下限值检测 下限值检测	82.0448 m/s 37.1906 cm/ 5.1679 mm p-	2 0-p 5 0-p 7	⑦ 所有点的清那 ● 前有点的清那 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3.4.3.1.1 试验时间

(1) 意义

设定试验的实施时间。

作为试验时间的设定方法,本系统准备了以下的两个种类。

- 1. 以时间指定
 - 指定加振的实施时间。

经过所设定的时间时,则试验结束。

- 时间输入的方法具有两种类,如果将试验时间设定为1小时时,则如下所示:
 - •通过秒数指定。输入'3600'。
 - •通过冒号(:)将 hhh:mm:ss 分隔指定。输入 '1:0:0'。
- 2. 无限

「无限」也就是在本项目中不指定试验结束条件的意思。

已进行本设定时,本系统在进行停止指示或与此相当的操作为止,根据指定条件 而继续加振。

3.5 输入通道

3.5.1 概要

Multi-Sweep Sine 的输入通道定义,与通常的 Sine 相同。 请参照 K2/Sine 的使用说明书「4.5 输入通道」。

输入通道具有以下两种类别:

- 控制通道
- 监测通道

本系统所使用的所有的输入通道,作为监测通道而定义。所以,控制通道也具有作为监测通道的功能。

本系统操作的目的是,使响应输入与预先给予的控制目标一致。控制通道是成就此目的的重要的通道。

<u>作为控制通道的控制对象的物理量,必须基本上与控制量是同一的量纲。但是,控制量是加速度 /</u> 速度 / 位移的情况下,控制通道的物理量能够从加速度 / 速度 / 位移里选择。(控制通道的图解, 决定于基本・控制条件的控制单位)</u>

3.5.2 输入通道

在输入通道的对话框,进行使用的输入通道的设定。

设定输入通道的方法有,在每个试验定义进行输入通道的设定的方法和进行输入环境信息的设定的 方法。

输入通道	直匹配									? 🔀
No.	通道名	分配	输入灵敏度	输入类型	极性	类别	监测	限制		[添加 (A)]
2	ch2	000-Ch1 000-Ch2	3.0 pC/(m/s²) 3.0 pC/(m/s²)	电伺输入(1 mV/pC) 电荷输入(1 mV/pC)	Ē	监测				変更 (C) 刪除 (D) ● ● 控制 ● 更新TEDS (T)
				輸入	灵敏度读	取]	参照) [¥	:置]	 取消

3.6 数据保存设定

3.6.1 概要

进行将试验中测量的数据保存在硬盘等情况下的各种设定。

Multi-Sweep Sine 也与通常的 Sine 相同,将在试验中所测量的所有数据作为1个二进制文件 (*.vdf2)保存。

但是,保存对象的数据仅为「试验运行中」的数据,「初始测定中」「初始均衡化中」的数据无法 保存。

将试验文件名伯	确定	
		取消
序列编号		
开始值	1	
最小位粉		

3.6.2 数据的保存设定

关于保存条件,原则上 Multi-Sweep Sine 也与通常的 Sine 相同。 关于各设定项目的详情,请参照 K2/Sine 的使用说明书「4.7 数据保存条件」。

「频率分割扫描」试验时,与通常的 Sine 相同,在折回的时序进行保存。但是,请注意,在所有的 扫描到达折回频率时折回。

在「延迟扫描」试验时,如果设定「每次折返时保存」时,则在执行复数扫描的加振中,在某个扫描折回的时序保存数据。

「多点」的情况时,没有「每次折返时保存」的项目。

3.7 运行状态

(1) 意义

表示有关试验运行的各种信息。

一选择菜单栏的「窗口-运行状态」,运行状态就被表示。

在 Multi-Sweep Sine 中,所表示的项目和内容也原则上与通常的 Sine 相同。

关于各表示内容的详情,请参照 K2/Sine 的使用说明书「4.8 运行状态」。

Test20)13.fds2 - K2/MultiS	weepSine			
文件(F)	试验定义(T) 运行操	作(P)编辑(E) 表	長示(V) 窗口(W) 选项(O) 帮助(H)		
Sweep	1 Sweep 2 Swe	eep 3 Sweep 4	1		
频率	目标	响应	驱动 试验持续时间 振动次数	Drive Limit	Alarm Abort ECO
28.	03 1.0 Hz mm p-p	1.0012 mm p-p	47.4 0:00:29 378 mV отр сусle	• •	000
	目标·响应图册	1 运行状态			
	运行状态				
	2013/10/29 8:16	5:24			
	试验中				
	历经时间	0:00:29			重级
	扫描信息	上扫	1 / 32 double-sweep		0.00
	11111111111111111111111111111111111111	(+) 209.6 mV (−) −215 2 mV			
	手动操作	0.00 dB			
	实时处理负载率	3.75 %			
				0.0 1000 100	
OFF	240 81	频率(Hz)	目标	响应	
	Sweep 1	28.03	1.0 mm p-p	1.0012 mm p-p	
	Sweep 2	88.68	20.0 m/s ² 0-p	20.2601 m/s= 0-p	
	Sweep 3	280.77	20.0 m/s= 0-p	20.0118 m/s= 0-p	
	Sweep 4	887.30	20.0 m/S ² 0-p	20.0451 m/s² 0-p	
		乳版式力 (mV)	据运力/欠类)		T
	•		III		
	3 7 7 8				
试验中				NUM	2013/10/29 8:15:52

以下说明与通常的 Sine 相比的添加项目和不同项目。

- (a) 各扫描・定点的表示频率、目标・响应级别、检测结果等,可在各扫描・定点进行表示。
- (b) 峰值电压

在 Multi-Sweep Sine 中添加的项目。 将复数的正弦波信号合成后生成驱动信号。表示该驱动信号的峰值电压。峰值电压表示为正、 负两侧。

(c) 驱动

与上述的峰值电压不同,是各扫描·定点的驱动输出电压。 表示在现在的控制循环中,必须在各扫描·定点输出的驱动输出电压,及其电压与最大驱动电 压的比(称为「对极限比率」)。

(d) 扫描

延迟扫描的情况时,在各扫描中表示扫描次数。

(e) 输入通道数据

除针对各通道表示各扫描数据之外,原则上与通常的 Sine 相同。还有,「相位」的数据在控制量为加速度 / 速度 / 位移的任意一项,且观测物理量为速度 / 速度 / 位移的情况时,为了了解是什么相位,在该物理量的旁边用「*」进行表示。

第4章 补充说明

4.1 关于错误信息

原则上承袭通常的 Sine 的错误信息,所以内容相同。 关于各内容的详情,请参照 K2/Sine 的使用说明书「第5章 错误信息及其含义」。 在此说明在 Multi-Sweep Sine 中添加的信息含义和添加的注意事项。

提示	意义 / 应付方法
 由于中断检测试验被中断。 	(意义) 由于在试验运行中的各种中断检测中产生了错误,试验被中 断。在试验状况中,错误的内容被表示。 在 Multi-Sweep Sine 中,除了「A)容差检查错误和「B)输 出电压的上限值错误」之外,还添加了「C)检测到过剩剪 贴」项目。
	A) 容差检测错误[1][2][3][6][7][8][9]各种容差检测中产生了错误,因而试验被中断。
	B) 输出电压的上限值错误[2] [3] [4] [5] [6] [7] [8] [9] 在试验运行中要求了超过试验系统设定的「最大 驱动电压」的输出电压,所以试验停止。
	C) 过剩剪贴検出 [2] [3] [6] [7] [8] [9] 合成的驱动信号输出的电压峰值超过「最大驱动 电压」的值,所以试验停止。
	 (应付方法) 首先,进行下列的检测。 系统的接线错误 灵敏度、输入形式等输入输出通道的信息定义错误 电缆断线 传感器安装不良 检测上述后,没有问题的话,请进行与下列的错误内容相对应的研讨。

提示	意味/対処方法
 由于中断检测试验被中断。 	 [1]「容差」的修改 [2] 基本・控制条件「均衡化模式」的修改 [3] 基本・控制条件「振幅推断方法」的修改 [4] 把基本・控制条件的「循环检测」设定为「宽松」 [5] 如果在试验系统设定的「最大驱动电压」超过限制 值,则重新设定该值 [6] 重新设定所定义的正弦波数 [7] 控制点的重新认识 [8] 使用的传感器的重新认识 [9] 试验种类的重新认识 [10]治具的设計的重新认识
 检测到扫描频率重合。 	 (意义) 在延迟扫描不同扫描之间的频率变得接近或变为相同的值, 所以试验停止。 在 Multi-Sweep Sine 中添加的项目。 (应付方法) 试验定义本身的不同扫描之间的延迟时间超过 5 秒,但在初始均衡化等操作中需要超过延迟时间的时间。 重新设定延迟扫描定义的「同时扫描数」、「扫描速率」。

提示	意味/対処方法
•由于 CPU 负荷过大,试验被断。	 中(意义) 试验运行中演算负荷过大,因而试验被中断。 (应付方法) ・使用 K2 以外的应用软件时,停止使用 ・基本・控制条件的「最高参考频率」变小 ・减少使用的通道数 ・重新设定正弦波个数 请进行上述等的研讨。

4.2 关于计时

在 Multi-Sweep Sine 中,也可在试验运行中进行级别变更或扫描停止等各种操作。将这些操作与计时的关系归纳到下表。

条 件			
		时间	不计时
频率分割扫描试	量级在 0dB 以下 □ 试 时	振动次数	不计数
验		扫描次数	计数
延迟扫描试验	固定扫描时	时间	计时
		振动次数	计数
夕古过卧	量级在 0dB 以下	时间	不计时
^{多点 山迎} 时	振动次数	不计数	

同样,关于试验时间完了的判断是否依存于试验量级,如下表所归纳。

试验时间完了的判断依存于试验量级的情况下,一旦试验量级为0dB以下,不被计时,试验不结束。

	条件	试验时间完了的判断
频率分割扫描试验	以扫描次数指定试验时间时	不依存量级
延迟扫描试验	以时间指定试验时间时	依存量级
多点试验		依存量级

4.3 设定动作

虽也有被删除的项目,但原则上与通常的 Sine 的内容相同。 关于各设定项目的详情,请参照 K2/Sine 的使用说明书「6.2 设定动作」。 在此,主要对新添加的项目进行说明。

<操作顺序>

选择菜单栏的「选项」,一旦点击「设定动作」,「设定动作对话框」就被表示。

选项(O)帮助(H)
设定动作(A)
设定图形颜色(G)
设定环境(E)
AVD 计算(C)
573
设定动作
容差里级指定单位
再次试验处理时
🔲 设定为试验开始频率
传递率表示单位
◎ 胡 ◎ % ◎ 单位/单位
运行状态
输入通道数据 标准 🚽
执行时的画面配置 □保持 初始化
() 确定 [] 取消]

<传输率表示单位>

选择「保持」,则试验运行结束时所表示的页面数及其图表类别等画面配置被自动保存,在进入下一个试验运行状态时,反映出所保存的画面配置。

但是,如果保存有试验类别固有的图表等情况时,在执行与其不同类别的试验时,该页面及图表将 被自动删除,请注意。

此外,需将画面配置返回初始状态时,请点击「初始化」按钮。

4.4 手动操作

使用手动操作工具栏,试验中能够修改控制目标。而且,手动操作工具栏被表示在用户界面画面的右端。

还有, 手动操作工具栏没被表示的时候, 请从菜单的表示中选择手动操作工具栏。

手动操作			×
试验里级	0.00 🌻	dB	确定
僧頑值	1.00 🚔) (取消

4.5 额定检查

试验前,为了确认试验定义是否可进行试验,进行将目标的最大值和系统的最大额定值进行比较的额定检查。

通常的 Sine 用单一的正弦波进行试验,所以可从所设定的目标定义便捷地计算出最大值。

但是,在 Multi-Sweep Sine 中由于也可能用复数的正弦波进行试验,所以需要通过各正弦波的最大峰值的 合计来计算最大值。以下说明各试验类别的最大值计算方法。

a) 频率分割扫描

考虑到在所分割的各带宽用相同扫描速度进行扫描,将各频率带宽用相同频率幅度细化,并将各振幅进行 合计。在各带宽中将细化的区间依次移动,并重复相同的计算。将其中振幅最大的合计值作为目标的最大 值,并将该值与额定值进行比较。目标的最大值示意如下所示。

b) 延迟扫描

将目标参数文件分配到同时扫描数的带宽,与上述频率分割扫描一样计算目标的最大值。

c) 多点

通过将各要素单纯地进行合计而计算出目标的最大值。

INDEX

Α	
按单程扫描次数指定	
按往返扫描次数指定	
C	
菜单栏	
传输率表示单位	
初始化到等间隔	
初始输出电压	
初始循环检测	
D	
带宽分割定义	
多点	, 2-37, 2-38, 3-1, 3-4, 3-7, 3-21, 4-10
多点目标	
多点试验	
E	
额定检查	4-10
F	
分隔频率	
分割数	
峰值振幅推定	
3	
跟踪	
H	
环境设定文件	
环境噪音	
J	
交越点	
基本操作例	
基本・控制条件	
基本条件	
均衡化模式	
X	,
控制单位	
控制目标	
控制目标级别	
控制目标频率	
控制时循环检测	
N	,

Р	
频率分割扫描	
频率分割扫描目标	
R	
容差	
容差定义	
S	
扫描模式	
上扫单程	
扫描方向	3-16
扫描速率	
设定动作	4-5
试验持续时间	2-17, 2-35, 2-52
试验定义文件	1-4
试验类别	1-5, 2-2, 2-20, 2-38
试验时间	
试验文件	
试验系统设定	
试验系统信息	
手动操作	
数据保存设定	
输入环境信息	
输入通道	
Т	
特征参数定义	
同时扫描数	
图表数据文件	
W	
往返扫描	
无限	
Х	
循环检测	
Y	
延迟扫描	1-1, 2-19, 2-20, 3-1, 3-4, 3-6, 3-7, 3-13, 3-21, 3-23, 4-2, 4-10
延迟扫描目标	
延迟时间	
以时间指定	
预检测电压	
运行状态	
运行状态面板	1-3

Z

折返终止时间	
最大驱动电压	
最高参考频率	