

IMV CORPORATION

IMV EUROPE LIMITED

1 Dunsbridge Business Park, Shepreth, Royston, Herts, SG8 6RA, United Kingdom tel.+44 1763 269978

IMV EUROPE LIMITED German Sales Office

Landsberger Str. 406, D-81241 München, Germany tel.+49 89 21545 9900

IMV France

1 rue George Stephenson 78180 Montigny Le Bretonneux, France tel.+33 (0)130124792

https://we-are-imv.com/de/

*Die technischen Daten und das Design können sich ohne vorherige Ankündigung ändern.

Weltmarktführer für Schwingprüfsysteme: zuverlässig und umweltfreundlich

Für eine bessere Zukunft: IMV setzt auf Qualität, Sicherheit und Zuverlässigkeit

IMV wurde 1957 gegründet und nimmt seither auf dem Gebiet der Schwingungstechnik eine führende Rolle in Forschung und Entwicklung ein. Das Unternehmen hat in den vergangenen Jahren zahlreiche wegweisende technische Lösungen im Bereich der Schwingungsprüfung entwickelt. Die Lösungen zeichnen sich durch einen hohen Grad an Sicherheit, Zuverlässigkeit und Langlebigkeit aus.

Simulation von Schwingungszuständen

IMV fertigt und liefert einachsige, sequenzielle und mehrachsige Schwingprüfsysteme mit bis zu sechs Freiheitsgraden sowie Schwingungsmess und Diagnosegeräte. Die Testsysteme dienen der Simulation von Schwingungsverhältnissen, die Messsysteme zur Visualisierung von Schwingungszuständen. Hochqualifizierte, erfahrene Ingenieure stehen dem Kunden bei der Durchführung von Schwingungsprüfungen, Messungen und Analysen zur Verfügung.

Hohes Innovationspotenzial

IMV leistet einen wertvollen Beitrag zur Verbesserung der Sicherheit in der Automobil- und Luftfahrtindustrie sowie im Maschinenbau und Bauwesen. Dank des hohen Grads an Entwicklungs und Innovationspotenzials trägt das Unternehmen seinen Teil zum Fortschritt der Gesellschaft bei.

Andere Anwendungen

» S.58



Kammer für vertikale Anregung	>> S.60
Kammer für vertikale und horizontale Anregung	>> S.61
Kammer für mehrachsige Anregung	>> S.63
Kammer für große Prüflinge	>> S.64
Technische Anleitung	>> S.65
Umrechnungstabelle	>> S.72
Netzwerk unserer Labore	>> S.73
Standorte	» S.75
System Layout	» S.76

Baureinen	<i>77</i> 5.03
[Basissysteme] Schwingprüfsysteme	
Ökologie	>> S.07
Baureihe A: Hochwertige Systeme	>> S.09
Baureihe J: Systeme mit großer Auslenkung	» S.13
Baureihe g: Standard Systeme	>> S.15
Baureihe K: Systeme mit großer Kraft	>> S.17
Baureihe m: Kompakte Systeme	» S.19
Optionale Erweiterungen	>> S.21
[Mehrachssysteme] Schwingprüfsysteme	
2-Achsen-Wechsel Systeme Baureihe DC	>> S.35
3-Achsen-Wechsel Systeme Baureihe TC	>> S.36
2-Achs-Simulations Systeme Baureihe DS	>> S.37
3-Achs-Simulations Systeme Baureihe TS	>> S.38
Schwingprüfanlage mit 6 Freiheitsgraden Baureihe TTS	» S.39
[Schwingungsregler] K2+	
Schwingungsregler K2+	>> S.41
[Fallstudien]	
Automotivkomponenten	>> S.48
Elektrokomponenten	>> S.53
Transportversuche	>> S.54
Baumaschinenversuche	>> S.55
Erdbebensicherheit	» S.56
Luft-und Raumfahrt	>> S 57

Baureihen

Baureihen Übersicht Schwingprüfsysteme

	Automobilindustrie	Flugzeugbau	Elektronikteile	Information und Telekommunikation	Präzisionsgeräte	Elektrogeräte	Transportwesen	Gebrauchswesen (5)
Baureihe A Hochwertige Systeme P09 Baureihe J Systeme mit großer Auslenkung P13 Baureihe G Standard Systeme P15	Audiosystem, Navigationssystem, Türspiegel, Umrichter, Motor, Beleuchtungskomponenten, Komponenten der elektronischen Steuerung, Magnetventile, Fahrzeugmessgeräte, Multifunktionsgerät, Kraftstoffpumpe, Ansaugsystem, Hybridkomponenten, elektronische Steuerung, Batterie, Elektropumpe, Auspuff, Katalysator, Brennstoffbatterie, ABS-Spule, Sicherheitsgurte, Bremsanlage	Sitzplatz, Fernsehschirm, Kommunikationstechnik, Kunstharzerzeugnisse, Geschirr, Sessel, Triebwerkskomponenten, Raumnutzung	LED TV, Verbinderkomponenten, elektrische Komponenten in Fahrzeugen, Allzweckmotor, Einbaugeräte, PC, gedruckte Leiterplatten, Transport-erschüt- terungen	Navigationssystem, Telekommunikationstechnik im Fahrzeug, Verkaufsautomaten an Autobahnen, Industriemotoren, Komponenten von Antennenanla- gen, Großantennen	Industrieroboter, Digitalkameras, Linsen, optische Ausrüstung, Komponenten von Bestückungs- technik, Handys, Kopierer, Videokameras	Stehspannungstransformatoren, Brennstoffbatterien, Komponent- en von Umrichtern, Raumfahrt- batterien, große Lithiumbatterien	Schienenfahrzeug-komponenten, Konstruktions-ausrüstung, Transport auf unebenen, verschmutzten Straßen	Kombiinstrument , Komponenten von Instrumententafeln , Solar-anlagen , sonstige Komponenten in Fahrzeugen , PC
Baureihe K Systeme mit großer Kraft P17	Bremse, Katalysator, Wärmedäm- mung, Hydrauliksensor, Anlasser, Drehstromgenerator, Auspuff, Hybridmotor, Batterie, Sensor, Lichtmaschine, Triebwerk	Satellitentechnik, Propeller, Motoren	Servomotoren, Kühlgeräte, Heizgeräte, Waschmaschinen , elektronische Großgeräte	Große Parabolantennen, Komponenten von Antennenanla- gen		Großbatterietechnik	Schienenfahrzeug-komponenten , Eisenbahn-komponenten	Displayanzeigen
Baureihe M Kompaktsysteme P19	Klimaanlage, ETC, IST-Gerät, Fahrzeugsensor, Autoradio, Navigationsanlage		Platten, Handys, mobile Produk- te , Elektronik-komponenten, Kompaktmotore	ETC für Zweiradfahrzeuge, Handys	Medizin. Geräte, Steuerungskonsolen, Digitalkameras, Halbleiterkomponenten			(Mikro-)Strukturen
Baureihe DC 2-Achsen-Wechsel Systeme P35	Kühler, Autoklimaanlage-Modul, Kompressor							
Baureihe TC 3-Achsen-Wechsel Systeme P36	Kühler, Autoklimaanlage-Modul	Luftfahrtinstrumente,	Umweltfreundliches Speditions -wesen, Audiotechnik in Fahrzeu-	Navigationssystem ,	Videokameras, Audiosystem,	Großbatterietechnik,	Puffermaterial, Verpackungsmaterial,	Erdbebensimulationstechnik, Testsystem zur Erdbebensicherheit
Baureihe DS 2-Achs-Simulationssysteme P37	Kühler, Autoklimaanlage-Modul, Rückspiegel	Flugzeugkomponenten	gen, LCD-Anzeigen, Haushalt- großgeräte	Audiosystem, Klammer	Kopierer, Multifunktionsdrucker	Leistungsplatine, Steuerplatine	Transportausrüstung	and the second s
Baureihe TS 3-Achs-Simulationssysteme P38	Audiosystem, Navigationssystem, Klimaanlage, schwingungsfester Einbau, Kühler							
Baureihe TTS Schwingprüfanlage mit 6 Freiheitsgraden P39	Fahrkomfort, Konstruktionsaus- rüstung, Halbkarosse					Batterie		Zelle für Bauausrüstungen

Baureihen Übersicht Schwingprüfsysteme

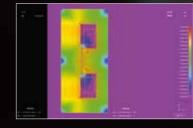
Schwingprüfsysteme Basissysteme

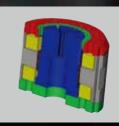
Baureihe A >> P.09 Hochwertige Systeme Baureihe J Systeme mit großer Auslenkung » P.13 Baureihe **G** Standard Systeme >> P.15 Baureihe K >> P.17 Systeme mit großer Kraft Baureihe **M** »P.19 Kompakt Systeme Optionale Erweiterungen >>P.21

Reduzierung der Geräuschemission

Die Optimierung der oberen Abdeckung und Ansaugung der Kühlluft führt zu einer deutlichen Verringerung des

Obere Parallelstützführung für Armatur


Schwingerreger generieren dynamische Belastungen, denen sie auch selber ausgesetzt sind. Bei der Parallelstützführung (PSG) handelt es sich um eine durch Patent geschützte Konstruktion zur Führung der Armatur. Dadurch wird die Standfestigkeit, Zuverläs-


sigkeit und die Qualität der erhöhter Standfestigkeit und Eigenfestigkeit des Systems durch Veränderung der Geometrie mit einzigartigen Radien.

Premium Luftkühlung

Durch die Nutzung der neuesten Finite-Elemente-Analyse Werkzeuge, ermöglichen die Magnetkreise und das Design der Kühlung der luftgekühlten IMV Systeme hohe Anregungskräfte (bis 74 kN). Die Kosten für luftgekühlte Systeme sind geringer als für wassergekühlte Systeme, sowohl für die Installation als auch im Unterhalt.

CO₂-Einsparung und Energieverbrauch werden angezeigt

In Kombination mit dem Schwingungsregler K2 von IMV ermöglicht der ECO-Shaker die Anzeige der aktuellen Leistungsaufnahme während der Prüfung in Echtzeit. Ein Bericht zum Energieverbrauch kann nach jedem Test erstellt werden.

Luftstroms und des Luftansaugeräusches.

[Basissysteme] Schwingprüfsysteme [Basissysteme] Schwingprüfsysteme

Automatisierung spart Energie

Der ECO-Shaker ist ein elektrodynamisches Testsystem zur Durchführung von Schwingungsprüfungen. Während eines Versuchs wird die Ausgangsleistung des Verstärkers automatisch optimiert. Die Leistungsaufnahme des Schwingerregers und die Drehzahl des Kühlgebläses entsprechen der Prüflast und den Prüfbedingungen. Aufwendige manuelle Einstellungen entfallen damit. Die Regelung erfolgt auf Grundlage der realen Prüfbedingungen. Auch wenn sich die Bedingungen -Temperatur und Leistungsaufnahme - während der Prüfung drastisch ändern, wird der Test fortgesetzt.

[Vorteile]

- · Nur Eingabe der Prüfbedingungen
- System reagiert automatisch auf Änderungen der Eigenschaften der Prüfprobe
- Automatische Regelung der Kühlgebläsedrehzahl durch Temperaturüberwachung

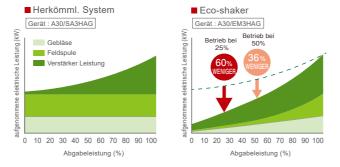
*System und Methode der Festlegung der Betriebsbedingungen (JP-Patent Nr. 4231095) *System und Programm der Festlegung der Betriebsbedingungen (JP-Patent Nr. 4263229)

Schwingungsregler K2+

Auswirkung der Energiesparmaßnahmen

Je geringer die Systemleistung, umso höher ist die mögliche Energieeinsparung.

Berechnung


Bestimmung der CO₂-Einsparung durch Vergleich mit den Ist-Daten des A30/SA3HAG (Kraft max. 52 kN)

1) Rauschen 2) durchschn. Abgabeleistung: 25% 3) durchschn. Betriebsdauer jährlich: 70%

Sparen Sie bis zu 80% Betriebskosten

Reduzieren Sie Ihre CO² Emissionen um bis zu 80%

Vergleich des Energieverbrauchs mit herkömmlichen Shakern

Betrieb des ISM-EM (Leistungsaufnahme)

Bei herkömmlichen Systemen müssen die Parameter für die Leistungsaufnahme manuell eingegeben werden. Mit der ISM-EM Technologie des ECO-Shakers erfolgt die Regelung der Ausgangsleistung des Verstärkers, der Feldleistung und der Drehzahl des Kühlgebläses automatisch. Damit arbeitet das System bei allen Prüfparametern mit optimaler Energieaufnahme

Eignung für vorhandene Systeme

Die Technologie ISM-EM bringt auch Nutzern von älteren Schwingprüfsystemen Vorteile. Denn die ISM-EM Technologie ist für herkömmliche Systeme nachrüstbar.

Vorhandene Anlage

Anlage ISM-EM

Beispielaufbau

Reduzierung der Geräuschemission und Verbesserung der Umgebungsbedingungen

Das Schwingprüfsystem spart dank Eco-Technologie nicht nur Kosten, es arbeitet auch deutlich geräuschärmer, und die Wärmeabgabe am Aufstellungsort der Anlage ist deutlich geringer als bei herkömmlichen Systemen. So sind auch die Bedingungen am Arbeitsplatz verbessert.

Gebläse

Schwingprüfsystem mit Energiesparfunktion [ECO-Shaker]

Schwingprüfsysteme Basissyste

Dynamische Prüfsysteme verbrauchen viel Energie. IMV hat umweltfreundliche Testsysteme entwickelt, die den Stromverbrauch und die CO2 Emissionen deutlich verringern. Die Shaker von IMV wurden aufgrund ihrer Umweltfreundlichkeit und dem reduzierten Energieverbrauch mit dem "Chairman's award" von The Machinery Federation in 2012 ausgezeichnet

[Energiespartechnologie] ISM-EM EM:Energiemanager

Beitrag für die Umwelt

Viele Länder haben Rechtsvorschriften eingeführt, wie den Clean Development Mechanism des Kyoto-Protokolls und die EU-Energieeffizienzrichtlinie, um den Umweltschutz zu fördern und die Unternehmen aufzufordern, energieeffizientere und umweltfreundlichere Produkte zu entwickeln. Die IMV ECO Shaker unterstützen die Unternehmen, diese Regularien zu erfüllen.

[Basissysteme] Schwingprüfsysteme [Basissysteme] Schwingprüfsysteme

Baureihe A Hochwertige Systeme

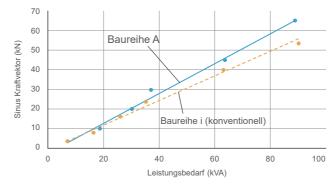
IMV setzt Maßstäbe.

Die A-Serie ermöglicht ein breiteres Spektrum von Testanforderungen und höhere Testspezifikationen. Sie erfüllt vielseitige Anforderungen unterschiedlichster Testumgebungen.

Die A-Serie arbeitet energieeffizient mit hoher Funktionalität und in einer geschützten Testumgebung. Die A-Serie verbessert die Arbeitsbedingungen im Labor.

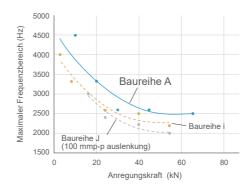
[Verbesserte Leistung] [Nutzerfreundlich und sicher] [Benutzerfreundlichkeit steht an erster Stelle]

Verbesserte Leistung


Die A-Serie erfüllt vielseitige Anforderungen

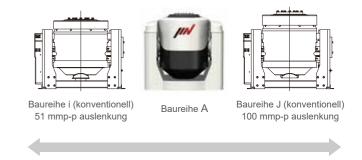
Ein breiteres Spektrum von Testanforderungen und höhere Testspezifikationen. Die A-Serie erfüllt die Anforderungen für unterschiedlichste Ansprüche.

■ Verbesserung des Kraftvektors

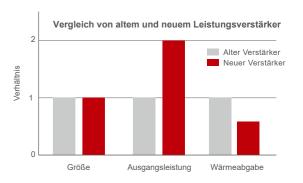

Im Vergleich zur i & J Serie bietet die A-Serie eine relative Vergrößerung des Kraftvektors.

- •Erhöhter Kraftvektor in Relation zur Anschlussleistung
- •Erhöhter Kraftvektor in Relation Systemmasse
- ·Erhöhter Kraftvektor in Relation Systemgröße

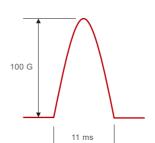
■ Erweiterung des Frequenzbereiches


Im Vergleich zu konventionellen Systemen bietet die A-Serie einen vergrößerten Frequenzbereich. (Gesicherte max. Auslenkung von A30, A45 & A65 von 76.2 mm pk-pk, durch mechanischen Endanschlag bei 82 mm pk-pk.)

■ Standardmäßig 76.2 mm pk-pk Auslenkung *Nur für A30, A45, A65, A74


Die A-Serie bietet eine Auslenkung von 76.2 mm pk-pk (3 Zoll). Hierdurch ist eine gute Balance in der Spezifikation von Geschwindigkeit, Beschleunigung und Auslenkung gewährleistet.

Das System kann für eine große Bandbreite an Tests genutzt werden.


■ Einführung neuer Leistungsmodule

Durch die Entwicklung eines Leistungsverstärkers mit einem Siliziumkarbid-Leistungsmodul der nächsten Generation, hat IMV ein geringes Grundrauschen und einen hohen Wirkungsgrad erzielt. Alle Modelle der A-Serie sind serienmäßig mit diesem neuen Leistungsmodul ausgestattet.

■ Schocktests mit hoher Geschwindigkeit

Wenn ein Test eine hohe Schockgeschwindigkeit erfordert, verwenden traditionelle Shaker-Systeme einen Anpasstransformator um die notwendige niedrigere Feldspannung zu erreichen. Da die ECO-Systeme von IMV die Feldleistung vorgeben können, kann der Wert so eingestellt werden, dass die maximale Schockgeschwindigkeit erreicht wird. Durch die Eingabe des angegebenen Schock Profils mit dem IMV K2-Schwingungsregler, wird die Feldleistung automatisch so eingestellt, dass die erforderliche Geschwindigkeit erreicht wird. Die A-Serie (EM Verstärkermodell) bietet eine maximale Schock-Schwinggeschwindigkeit von 4,6 m/s.

Beispiele für Schocktests

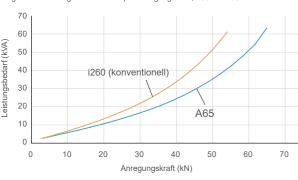
		i220/SA1HAG
	Nennkraft Schock (kN)	16
Baureihe i	Geschw Schock (m/s peak)	2.2
(konventionell)	Auslenkung, Maximum (mms-s)	51
	Last Maximum (kg)	Nicht durchführbar (Geschwindigkeit und Auslenkung nicht ausreichend)

	Gerätetyp	No applicable product	J230/SA3HAG	J240/SA4HAG	J250/SA6HAG	J260/SA7HAG	Kein entsprechendes System
D	Nennkraft Schock (kN)	-	40	55	80	108	-
Baureihe J	Geschw Schock (m/s peak)	-	2.4	2.4	2.4	2.4	-
(konventionell)	Auslenkung, Maximum (mms-s)	-	100	100	100	100	-
	Last Maximum (kg)	-	Nicht durch	führbar (Geschv	vindigkeit nicht a	ausreichend)	-

	Gerätetyp	A11/EM1HAG	A22/EM2HAG	A30/EM3HAG	A45/EM4HAG	A65/EM5HAG	A74/EM8HAG
	Nennkraft Schock (kN)	22 (16.5)	44 (36)	60 (50)	90 (80)	130 (120)	180 (160)
Baureihe A	Geschw Schock (m/s peak)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)
	Auslenkung, Maximum (mms-s)	51 (55)	51 (55)	76.2	76.2	76.2	76.2
	Last Maximum (kg)	5	14	17	30	48	86

*Max. Gewicht auf leerer Armatur

Benutzerfreundlich und sicher


A-Serie Änderungen

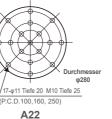
Verbesserte automatische Energieeinsparung, hohe Funktionalität und geschützte Prüfumgebung. Die A-Serie verbessert das Arbeitsumfeld im Bereich der Schwingungsprüfung.

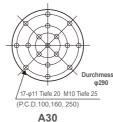
■ Geringerer Energieverbrauch

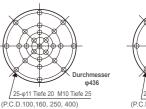
Im Vergleich mit ähnlichen Systemen der i- und J-Serie, bietet die A-Serie eine weitere Verbesserung beim Energieverbrauch. Mit der automatischen Energiespar-Funktion kann so bei allen Kraftbereichen noch mehr Energie eingespart werden.

Vergleich des Energieverbrauches pro Anregungskraft, A65 vs. i260.

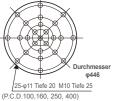
■ Internationale Sicherheitsstandards


Die A-Serie erfüllt internationale Sicherheitsstandards.




Kein Risiko eines Stromschlages

Armatur Lochbilder (Einheit: mm)



A45

A65/A74

■ Spezifikationen

A11

			A11/	⊘ A11/	A22/		A30/		A45/		A65/			⊘ A74/	⊘ A74/
	Syste			EM1HAG	SA2HAG	EM2HAG	SA3HAG	EM3HAG	SA4HAG	EM4HAG		EM5HAG*7	EM6HAG*7	EM8HAG*7	EM10HAG*7
	Freque	nzbereich (Hz)	0-4500*4	0-4500*4	0-3300	0-3300	0-2600	0-2600	0-2600	0-2600	0-2600*5	0-2600*5	0-2600*5	0-2600*5	0-2600*5
		Sinus (kN)	11	11	22	22	30	30	45	45	65	65	74	74	74
	N1I	Rauschen (kN eff)*1	11	11	22	22	30	30	45	45	65	65	74	74	74
	Nennkraft	Schock (kN)	22	22	44	44	60	60	90	90	130	130	148	180	222
		High-Velocity-Schock(kN)	-	16.5	-	36	-	50	-	80	-	120	120	160	170
		Sinus (m/s²)	1000	1000	1000	1000	900	900	900	900	900	900	1000	1000	1000
	Beschl.	Rauschen (m/s² eff)	630	630	630	630	630	630	630	630	630	630	630	630	630
	Maximum	Schock (m/s² spitze)	2000	2000	2000	2000	1818	1818	1800	1800	1806	1806	2000	2000	2000
Systemdaten		High-Velocity-Schock (m/s² spitze)	-	1500	-	1636	-	1515	-	1600	-	1666	1621	2000	2000
-,		Sinus (m/s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Geschw	Schock (m/s spitze)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
		High-Velocity-Schock (m/s spitze)	-	3.5	-	3.5	-	3.5	-	3.5	-	3.5	3.5	3.5	3.5
	Ausl.	Sinus (mms-s)	51	51	51	51	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2
	Maximum	High-Velocity-Schock (mms-s)	-	55	-	55	-	76.2	-	76.2	-	76.2	76.2	76.2	76.2
	Mech. N	Maximum (mms-s)	64	64	64	64	82	82	82	82	82	82	82	82	82
	Last Ma	aximum (kg)	200	200	300	300	400	400	600	600	1000	1000	1000	1000	1000
	Leistun	gsbedarf (kVA)*2	20.4	20.4	30	30	36	36	57	57	83	83	100	100	100
	Trennso	chalter (A)*3	40	40	60	60	75	75	100	100	150	150	250	250	250
					A22	A22	A30	A30	A45	A45			A74	A74	A74
	Masse	Armatur (kg)	11	11	22	22	33	33	50	50	72	72	74	74	74
	Durchme	esser Armatur (φmm)	210	210	280	280	290	290	436	436	446	446	446	446	446
0.1	Zul. Exz	.moment (N·m)	294	294	700	700	850	850	1550	1550	1550	1550	1550	1550	1550
Schwingerreger	Abmess	sung (mm) W×H×D	946 × 827 × 676	946 × 827 × 676	1038 × 955 × 775	1038 × 955 × 775	1100 × 1048 × 840	1100 × 1048 × 840	1232 × 1215 × 1040	1232 × 1215 × 1040	1310 × 1253 × 1040				
	Shaker Bo	ody Durchmesser (φmm)	585	585	678	678	725	725	825	825	925	925	925	925	925
	Masse	(kg)	1080	1080	1600	1600	2100	2100	3200	3200	4200	4200	4200	4200	4200
	Geräte	typ		EM1HAG-A11		EM2HAG-A22	SA3HAG-A30	EM3HAG-A30	SA4HAG-A45	EM4HAG-A45	SA5HAG-A65	EM5HAG-A65	EM6HAG-A74	EM8HAG-A74	EM10HAG-A74
	Leistun	g Maximum (kVA)	12	12	24	24	31	31	44	44	68	68	100	100	100
Leistungsverstärker	Abmess	sung (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850
	Masse	(kg)	280	470	350	560	520	590	900	1000	1000	1150	1340	1850	2400
Regler	Schwin	gungsregler						Siehe Sc	hwingungsı	regler K2					
	Kühlun	g						l	uftkühlung	<u> </u>					
Kühlung	\	Abmessung (mm) W×H×D*6	1023 × 2285 × 531	1023 × 2285 × 531	929 × 2175 × 534	929 × 2175 × 534	1043 × 2335 × 640	1043 × 2335 × 640	1160 × 2405 × 787	1160 × 2405 × 787	1294 × 2540 × 871	1294 × 2540 × 871	1462 × 2800 × 930	1462 × 2800 × 930	1462 × 2800 × 930
Running	Gebläse	Masse (kg)	150	150	150	150	150	150	250	250	268	268	320	320	320
		Leistung (kw)	4.0	4.0	4.0	4.0	5.5	5.5	11	11	18.5	18.5	30	30	30
		$Schlauch\text{-}Durchmesser(\phi)$	125	125	200	200	200	200	250	250	250	250	250	250	250

- *1 Die Nennkräfte sind nach ISO5344 spezifiziert. Bitte kontaktieren Sie IMV oder Ihren lokalen Distributor, um spezielle Testanforderungen abzuklären.
 *2 El. Anschluss: 3-phasig 200/220/240/380/400/415/440 V, 50/60 Hz. Für andere Anschlusswerte wird ein Transformator benötigt.

- *3 Für 400 V
 *4 Oberhalb von 4000 Hz, fällt die Kraft mit einer Flanke von -6 dB/Oktave ab.

- 4 Oberfalls von 4000 Hz, fallt die Kraft mit einer Flanke von -1 de BOktave ab.

 *6 Obrigal von 2000 Hz, fallt die Kraft mit einer Flanke von -1 de BOktave ab.

 *6 Obige Spezifikation für 60 Hz, geänderte Abmessungen für 50 Hz.

 *7 EUC für Export von Shakern mit mehr als 50 kN Sinus-Kraft erforderlich.

 *In der Spezifikation sind die maximalen Systemparameter angegeben. Für Langzeittests sollten 70% der angegebenen Systemparameter nicht überschritten werden.

 Ein kontinuierlicher Betrieb bei den maximalen Systemparametern kann zu Beschädigungen führen. Kontaktieren Sie IMV, wenn Sie mehr als 70% benötigen

 *Im Falle einer Prüfung mit Breitbandrauschen, sollte die maximale Spitzenbeschleunigung keiner als die maximal zulässige Schock-Beschleunigung sein.

 **Poer Freuwendbersiek konn, in anch vonwenderben Mesenzingebenen der Poerleutstenen einseschricht sein.

- *Der Frequenzbereich kann je nach verwendeten Messaufnehmern oder Regelsystemen eingeschränkt sein.
 *Gewicht der Armatur und Beschleunigung können bei Kombination mit einer Kammer abweichen.

Baureihe J

Systeme mit großer Auslenkung

J240/SA4HAG (mit Gleittisch)

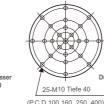
Baureihe J – für die Durchführung von Prüfungen mit hoher Geschwindigkeit und großer Auslenkung

Dauerschockprüfungen erfordern hohe Geschwindigkeit und große Auslenkungen. Die Baureihe J bietet hoch funktionale Systeme mit hohem Nutzwert und großer Standfestigkeit, ausgestattet mit Funktionen, die hohe Geschwindigkeiten und große Auslenkungen ermöglichen.

[Erweiterter Prüfbereich] • Geschwindigkeit bis 2.4 m/s, • Geschwindigkeit für Schockprüfungen bis 4.6 m/s • Auslenkung bis 100 mmpk-pk [Parallele, obere Armatur Führung mit PSG] Parallelstützführung (PSG) ist Standard

[Leise] Optimierte Auslegung des Lufteinlass für geringeren Strömungswiderstand hat das Ansauggeräusch verringert.

[Alle Geräte können direkt mit Klimakammern gekoppelt werden]


Armatur Lochbilder (Einheit: mm)

(P.C. D. 100 160)

J240

J250

(P.C.D. 100 160 250 400) J260/J260S

J230 ■ Spezifikationen

- opeziiii										
	Systen	· · · · · · · · · · · · · · · · · · ·	J230/SA3HAG	J230S/SA7HAG	J240/SA4HAG	J240/SA6HAG	J250/SA5HAG	J250/SA6HAG	J260/SA7HAG*7	J260S/SA16HAG*
	Freque	nzbereich (Hz)	0-3000	0-3000	0-2400	0-2400	0-2200	0-2200	0-2600*4	0-2000
		Sinus (kN)	16	16	24	24	35	40	54	54
Systemdaten Systemdaten Ge A Max Mx La Le Tr G M. Schwingerreger At Sh M. Regler K K K K K K K K K K K K K	Nennkraft	Rauschen (kN eff)*1	16	16	24	24	35	40	54	54
		Schock (kN)	40	40	55	70	70	80	108	196
		Sinus (m/s ²)	16 16 24 24 24 35 40 54 54 54 16 16 16 24 24 24 35 40 54 54 54 40 40 40 55 70 70 70 80 108 196 941 888 923 923 777 888 857 857 857 658 622 646 646 544 622 600 600 2000 2000 2000 2000 1555 1777 1714 2000 2400 2400 1500 1500 1500 1500 1500 1500 1500 1	857						
	Beschl. Maximum	Rauschen (m/s² eff)	658	622	646	646	544	622	600	600
		Schock (m/s² spitze)	2000	2000	2000	2000	1555	1777	1714	2000
Systemdaten	Geschw	Sinus (m/s)	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
		Schock (m/s spitze)	2.4	3.5	2.4	3.6	2.4	2.4	2.4	4.6
	Ausl. Maximum	Sinus (mms-s)	100	100	100	100	100	100	100	100
	Mech. I	Maximum (mms-s)	120	120	120	120	120	120	116	116
	Last Ma	aximum (kg)	300	300	400	400	600	600	1000	1000
	Leistun	gsbedarf (kVA)*2	28	38	38	52	53	57	86	96
	Trennso	chalter*3	50	75	75	100	100	100	150	225
T G N C C Schwingerreger A	Gerätetyp									
	Masse	Armatur (kg)	17	18	26	26	45	45	63	63
	Durchme	esser Armatur (φmm)	200	200	290	290	440	440	446	432
0-1		.moment (N+m)								
Schwingerreger	Abmes	sung (mm) W×H×D	1124 × 1079 × 850	1124 × 1079 × 850	1234 × 1145 × 890	1234 × 1145 × 890	1463 × 1301 × 1100	1463 × 1301 × 1100	1527 × 1319 × 1100	1657 × 1319 × 1100
	Shaker B	Body Durchmesser (φmm)	630	630	720	720	860	860	920	920
	Masse	(kg)	1800	1800	2400	2400	3500	3500	4100	5000
			SA3HAG-J30	SA7HAG-J30S	SA4HAG-J40				SA7HAG-J60	SA16HAG-J60S
	Leistun	g Maximum (kVA)	23	30	34	40	50	57	70	76
Leistungsverstärker	Abmes	sung (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	1740 × 1950 × 850
	Masse	(kg)	330	500	440	1200	880	910	1400	2400
Regler	Schwin	gungsregler				Siehe Schwingur	ngsregler K2			
	Kühlun	g				Luftkühl	ung			
	At	omessung (mm) W × H × D	1044 × 2285 × 704	1044 × 2285 × 704	929 × 2175 × 534	929 × 2175 × 534	1160 × 2405 × 787	1160 × 2405 × 787	1160 × 2405 × 787	1160 × 2405 × 787
Kühlung	Gebläse M	lasse (kg)	150	150	150	150	250	250	250	250
	Lebiase	eistung (kw)	3.7	3.7	5.5	5.5	11	11	15	15
	So	chlauch-Durchmesser(φ)	200	200	200	200	250	250	250	250

■ Eco Spezifikationen

		ntyp	∅ J230/EM3HAG	∅ J240/EM4HAG	∅ J250/EM5HAG	 	Ø J260/EM7HAG
	Frequer	nzbereich (Hz)	0-3000	0-2400	0-2200	0-2200	0-2600*4
		Sinus (kN)	16	24	35	40	54
	Nennkraft	Rauschen (kN eff)*1	16	24	35	40	54
	INETITIKIAIL	Schock (kN)	40	55	70	80	108
		High-Velocity-Schock (kN)*6	30	48	68	77	96
		Sinus (m/s²)	941	923	777	888	857
	Beschl.	Rauschen (m/s² eff)	658	646	544	622	600
	Maximum	Schock (m/s² spitze)	2000	2000	1555	1777	1714
ystemdaten		High-Velocity-Schock (m/s² spitze)*6	1764	1846	1511	1711	1523
,		Sinus (m/s)	2.4	2.4	2.4	2.4	2.4
	Geschw	Schock (m/s spitze)	2.4	2.4	2.4	2.4	2.4
		High-Velocity-Schock (m/s spitze)*6	3.5	3.5	3.5	3.5	3.5
	Ausl.	Sinus (mms-s)	100	100	100	100	100
	Maximum	High-Velocity-Schock (mms-s)*6	100	100	100	100	100
	Mech. N	Maximum (mms-s)	120	120	120	120	116
	Last Maximum (kg)		300	400	600	600	1000
	Leistun	gsbedarf (kVA)*2	28	38	53	57	86
	Trennschalter (A)*3		50	75	100	100	150
Tre Ge	Gerätet						
	Masse	Armatur (kg)	17	26	45	45	63
	Durchme	esser Armatur (φmm)	200	290	440	440	446
chwingerreger	Zul. Exz	.moment (N·m)	700	850	1550	1550	1550
	Abmess	sung (mm) W×H×D	1124 × 1079 × 850	1234 × 1145 × 890	1463 × 1301 × 1100	1463 × 1301 × 1100	1527 × 1319 × 11
	Shaker B	ody Durchmesser (φmm)	630	720	860	860	920
	Masse	(kg)	1800	2400	3500	3500	4100
	Gerätet	typ	EM3HAG-J30	EM4HAG-J40	EM5HAG-J50	EM6HAG-J50	EM7HAG-J60
	Leistung	g Maximum (kVA)	23	34	50	57	70
istungsverstärke	Abmess	sung (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 8
	Masse	(kg)	380	490	930	960	1400
Regler	Schwin	gungsregler		Si	ehe Schwingungsregler K2		
	Kühlun	g			Luftkühlung		
	At	omessung (mm) W × H × D	1044×2285×704	929 × 2175 × 534	1160 × 2405 × 787	1160 × 2405 × 787	1160 × 2405 × 78
Kühlung	M	asse (kg)	150	150	250	250	250
	Gebläse Le	eistung (kw)	4.0	4.0	11	11	15
		chlauch-Durchmesser(φ)	200	200	250	250	250

^{*1} Die Nennkräfte sind nach ISO5344 spezifiziert. Bitte kontaktieren Sie IMV oder Ihren lokalen Distributor, um spezielle Testanforderungen abz *2 El. Anschluss: 3-phasig 380/400/415/440 V, 50/60 Hz. Für andere Anschlusswerte wird ein Transformator benötigt.

^{*4} Oberhalb von 2000 Hz. fällt die Kraft mit einer Flanke von -12 dB/Oktave ab.

^{*5} Obige Spezifikation für 50 Hz, geänderte Abmessungen für 60 Hz.

*6 Für High-Velocity option

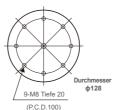
*7 EUC für Export von Shakern mit mehr als 50 kN Sinus-Kraft erforderlich.

*In der Spezifikation sind die maximalen Systemparameter angegeben. Für Langzeittests sollten 70% der angegebenen Systemparameter nicht überschritte
Ein kontinuierlicher Betrieb bei den maximalen Systemparametern kann zu Beschädigungen führen. Kontaktieren Sie IMV, wenn Sie mehr als 70% benötige

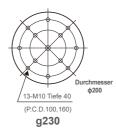
*Im Falle einer Prüfung mit Breitbandrauschen, sollte die maximale Spitzenbeschleunigung kleiner als die maximal zulässige Schock-Beschleunigung sein.

^{*}Der Frequenzbereich kann je nach verwendeten Messaufnehmern oder Regelsystemen eingeschränkt sein.
*Gewicht der Armatur und Beschleunigung können bei Kombination mit einer Kammer abweichen.

Baureihe 9 Standard Systeme



Die Baureihe g ist ein Standardsortiment und einfacher zu warten als kundenspezifische Produkte


Die g-Serie ist auch mit der alternativen, kostengünstigen Verstärkerreihe der DMA-Serie erhältlich. Bitte überprüfen Sie die Details.

[Erweiterter Prüfbereich: maximale Werte die mit der Baureihe i erreicht werden] *Beschleunigung bis: 1250 m/s² *Geschwindigkeit bis 3.5m/s *Auslenkung bis 51mmpk-pk *Prüflast bis 600 kg [Alle Geräte können direkt mit Klimakammern gekoppelt werden]

■ Armatur Lochbilder (Einheit: mm)

■ Spezifikationen

g210

			g210/SA1HAG	g220/SA1HAG	g230/SA2HAG	g240/SA3HAG	g250/SA4HAG	g250/SA5HAG
	Frequer	nzbereich (Hz)	0-4000	0-3300	0-3000	0-2600	0-2500	0-2500
		Sinus (kN)	3	8	16	24	32	40
	Nennkraft	Rauschen (kN eff)*1	3	8	16	24	32	40
		Schock (kN)	9	16	32	48	64	80
	Beschl.	Sinus (m/s²)	1000	1250	1250	1200	914	1142
	Maximum	Rauschen (m/s² eff)	700	875	875	840	640	800
		Schock (m/s² spitze)	2000	2000	2000	2000	1828	2000
Systemdaten	Geschw	Sinus (m/s)	2.2	2.2	2.2	2.2	2.2	2.2
		Schock (m/s spitze)	2.2	2.2	2.2	2.2	2.2	2.2
	Ausl. Maximum	Sinus (mms-s)	30	51	51	51	51	51
	Mech. N	Maximum (mms-s)	40	60	64	68	68	68
	Last Ma	aximum (kg)	120	200	300	400	600	600
	Leistun	gsbedarf (kVA)*2	6.8	16.4	26	36	51	57
	Trennso	chalter*3	15	30	50	75	100	100
M: Du Zu	Gerätetyp		g210	g220	g230	g240	g250	g250
	Masse	Armatur (kg)	3	6.4	12.8	20	35	35
	Durchme	esser Armatur (φmm)	128	190	200	290	440	440
Schwingerreger	Zul. Exz	.moment (N·m)	160	294	700	850	1550	1550
Scriwingeneger	Abmess	sung (mm) W×H×D	868 × 700 × 458	1020 × 903 × 550	1124 × 957 × 860	1234 × 997 × 890	1463 × 1187 × 1100	1463 × 1187 × 1100
	Shaker B	ody Durchmesser (φmm)	458	550	630	720	860	860
	Masse		350	900	1500	2000	3000	3000
	Gerätet		SA1HAG-g10	SA1HAG-g20	SA2HAG-g30	SA3HAG-g40	SA4HAG-g50	SA5HAG-g50
	Leistun	g Maximum (kVA)	5	10	20	30	40	50
Leistungsverstärker	Abmess	sung (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850
	Masse	(0 /	240	280	300	410	850	880
Regler	Schwin	gungsregler			Siehe Schwingur	ngsregler K2		
	Kühlun	g			Luftkühl	ung		
	At	omessung (mm) W × H × D	600 × 1905 × 557	808 × 2085 × 733	1044 × 2285 × 704	929 × 2175 × 534	116 0× 2405 × 787	1160 × 2405 × 787
Kühlung	Gebläse	asse (kg)	45	85	150	150	250	250
	Le	eistung (kw)	0.4	1.5	3.7	5.5	11	11
	Sc	chlauch-Durchmesser(φ)	125	125	200	200	250	250

■ Eco Spezifikationen

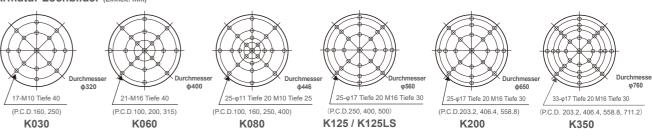
			Ø g220/EM1HAG	g230/EM2HAG	 	Ø g250/EM4HAG	
	Freque	nzbereich (Hz)	0-3300	0-3000	0-2600	0-2500	0-2500
		Sinus (kN)	8	16	24	32	40
	Namelweft	Rauschen (kN eff)*1	8	16	24	32	40
	Nennkraft	Schock (kN)	16	32	48	64	80
		High-Velocity-Schock (kN)*6	10	23	36	49	63
		Sinus (m/s²)	1250	1250	1200	914	1142
	Beschl.	Rauschen (m/s² eff)	875	875	840	640	800
		Schock (m/s² spitze)	2000	2000	2000	1828	2000
Systemdaten		High-Velocity-Schock (m/s² spitze)*6	1562	1796	1800	1400	1800
, otorriacion		Sinus (m/s)	2.2	2.2	2.2	2.2	2.2
	Geschw	Schock (m/s spitze)	2.2	2.2	2.2	2.2	2.2
		High-Velocity-Schock (m/s spitze)*6	3.5	3.5	3.5	3.5	3.5
	Ausl.	Sinus (mms-s)	51	51	51	51	51
	Maximum	High-Velocity-Schock (mms-s)*6	51	51	51	51	51
	Mech. I	Maximum (mms-s)	60	64	68	68	68
	Last Maximum (kg)		200	300	400	600	600
	Leistungsbedarf (kVA)*2		16.4	26	36	51	57
	Trennschalter (A)*3		30	50	75	100	100
	Geräte	typ	g220	g230	g240	g250	g250
	Masse	Armatur (kg)	6.4	12.8	20	35	35
	Durchme	esser Armatur (φmm)	190	200	290	440	440
chwingerreger	Zul. Exz	.moment (N·m)	294	700	850	1550	1550
ogoogo.	Abmes	sung (mm) W×H×D	1020 × 903 × 550	1124 × 957 × 860	1234 × 997 × 890	1463 × 1187 × 1100	1463 × 1187 × 110
	Shaker B	ody Durchmesser (φmm)	550	630	720	860	860
	Masse	(kg)	900	1500	2000	3000	3000
	Gerätet	typ	EM1HAG-g20	EM2HAG-g30	EM3HAG-g40	EM4HAG-g50	EM5HAG-g50
	Leistun	g Maximum (kVA)	10	20	29	40	50
eistungsverstärker	Abmes	sung (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	580 ×1950 × 850	1160 × 1950 × 850	1160 × 1950 × 85
	Masse	(kg)	280	350	460	900	930
Regler	Schwin	gungsregler			Siehe Schwingungsregler K2		<u> </u>
	Kühlun	g			Luftkühlung		
	Al	omessung (mm) W × H × D	808 × 2085 × 733	1044 × 2285 × 704	929 × 2175 × 534	1160 × 2405 × 787	1160 × 2405 × 78
Kühlung	M	asse (kg)	85	150	150	250	250
	I(Seniase)	eistung (kw)	1.5	4.0	4.0	11	11
		chlauch-Durchmesser(φ)	125	200	200	250	250

^{*1} Die Nennkräfte sind nach ISO5344 spezifiziert. Bitte kontaktieren Sie IMV oder Ihren lokalen Distributor, um spezielle Testanforderungen abzuklä
*2 El. Anschluss: 3-phasig 380/400/415/440 V, 50/60 Hz. Für andere Anschlusswerte wird ein Transformator benötigt.

^{*4} Oberhalb von 2000 Hz. fällt die Kraft mit einer Flanke von -12 dB/Oktave ab.

^{*5} Obige Spezifikation für 50 Hz, geänderte Abmessungen für bü Hz.
*6 Für High-Velocity option
*7 EUC für Export von Shakern mit mehr als 50 kN Sinus-Kraft erforderlich.
*In der Spezifikation sind die maximalen Systemparameter angegeben. Für Langzeittests sollten 70% der angegebenen Systemparameter nicht überschritten: Ein kontinuierlicher Betrieb bei den maximalen Systemparameter kann zu Beschädigungen führen. Kontaktieren Sie IMV, wenn Sie mehr als 70% benötigen.
*Im Falle einer Prüfung mit Breitbandrauschen, sollte die maximale Spitzenbeschleunigung kleiner als die maximal zulässige Schock-Beschleunigung sein.
*Der Frequenzbereich kann je nach verwendeten Messaufnehmern oder Regelsystemen eingeschränkt sein.
*Gewicht der Armatur und Beschleunigung können bei Kombination mit einer Kammer abweichen.

Baureihe K Systeme mit großer Kraft



Hohe Anregungskraft und leise Wasserkühlung zur Verbesserung der Prüfbedingungen

Die wassergekühlten Schwingerreger der Baureihe K wurden komplett von IMV entwickelt. Die Testsysteme arbeiten deutlich leiser als luftgekühlte Systeme. Auch die Leistungsfähigkeit wurde verbessert.

[Geräuschloses Systemdesign] Wassergekühlte Systeme verursachen wegen Ansaug- noch Abluftgeräusche wie bei einem luftgekühlten System [Nachweis bedeutender Errungenschaft] IMV hat wassergekühlte Systeme vor anderen inländischen Herstellern entwickelt.

■ Armatur Lochbilder (Einheit: mm)

■ Spezifikationen

			K030/SA4HAG								K200/SA24HAG*6	K350/SA36HAG
	Freque	enzbereich (Hz)	0-3000	0-2500	0-2500	0-2500	0-2500	0-2000	0-2000	0-2000	0-2000	0-2000
		Sinus (kN)	30.8	61.7	80	100	125	100	125	160	200	350
	Nennkraft	Rauschen (kN eff)*1	21.5	61.7	80	100	125	100	125	160	200	315
		Schock (kN)	61.6	123.4	160	200	250	200	250	320	400	700
		Sinus (m/s²)	1000	1000	1000	1000	1000	1000	1000	800	1000	1000
	Beschl. Maximum	Rauschen (m/s² eff)	557	700	700	700	700	700	700	560	700	700
Systemdaten		Schock (m/s² spitze)	2000	2000	2000	2000	2000	2000	2000	1600	2000	2000
•	Geschw	Sinus (m/s)*3	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
		Schock (m/s spitze)	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.4	2.4	3.5
	Ausl. Maximum	Sinus (mms-s)	51	51	51	51	51	100	100	76.2	76.2	76.2
	Mech.	Maximum (mms-s)	58	60	59	62	62	116	116	86	86	94
	Last N	laximum (kg)	500	1000	1000	2000	2000	2000	2000	2000	2000	3000
	Leistu	ngsbedarf (kVA)*2	49	87	100	150	170	170	190	270	300	325
	Trenns	schalter (A)*3	100	150	175	300	300	300	350	500	600	400/200
						K125A	K125A	K125LS	K125LS	K200	K200	K350
	Masse Armatur (kg)		27	40	60	80	80	100	100	200	200	350
	Durchn	nesser Armatur (φmm)	320	400	446	560	560	560	560	650	650	760
Schwingerreger	Zul. Ex	z.moment (N·m)	980	980	1550	2450	2450	2450	2450	4900	4900	4900
	Abmes	ssung (mm) W×H×D	1100 × 1090 × 824	1380 × 1085 × 1000	1595 × 1200 × 1050	1776 × 1373 × 1300	1776 × 1373 × 1300	1990 × 1546 × 1370	1990 × 1546 × 1370	2465 × 1908 × 1740	2465 × 1908 × 1740	3020 × 2306 × 2080
	Shaker	Body Durchmesser (φmm)	760	900	1000	1100	1100	1100	1100	1260	1260	1630
	Masse	e (kg)	3000	3700	5000	7000	7000	8000	8000	19000	19000	40000
			SA4HAG-K30	SA8HAG-K60	SA10HAG-K80	SA14HAG-K125		SA16HAG-K125LS		SA20HAG-K200	SA24HAG-K200	SA36HAG-K350
	Leistu	ng Maximum (kVA)	33	60	100	98	124	124	155	256	320	400
Leistungsverstärker	Abmes	ssung (mm) W×H×D	580 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1740 × 1950 × 850	1740 × 1950 × 850	1740 × 1950 × 850	1740 × 1950 × 850	2320 × 1950 × 850	2900 × 1950 × 850	4060 × 1950 × 850
	Masse	e (kg)	950	1350	1500	2500	2600	2600	3300	4850	5000	6200
Regler	Schwi	ngungsregler				Sie	ehe Schwingui	ngsregler K2				
	Kühluı	J					sserkühlung/V					
Kühlung		erbedarf primär (I/min)	195	260	390	390	390	390	390	650*5	650*5	650*5
9	liamenetace	Abmessung (mm) W × H × D										
	ľ	Masse (kg)	400	400	400	400	400	400	400	600	600	950

■ Eco Spezifikationen

		K030/ EM4HAG	K062/ EM8HAG		K100A/ EM14HAM ^{*6}	K125A/ EM18HAG*6	✓ K125A/ EM28HAG ⁺⁶	K100LS/ EM16HAM ^{*6}	K125LS/ EM20HAG*6	K125LS/ EM30HAG*	K160/ EM20HAG*6	K200/ EM24HAG*6	K200/ EM50HAG*	K350/ EM36HAG ^{*6}	K350/ EM50HAG*6
	Frequenzbereich (Hz)	0-3000	0-2500	0-2500	0-2500	0-2500	0-2500	0-2000	0-2000	0-2000	0-2000	0-2000	0-2000	0-2000	0-2000
	Sinus (kN)	30.8	61.7	80	100	125	125	100	125	125	160	200	200	350	350
	Rauschen (kN eff)*1	21.5	61.7	80	100	125	125	100	125	125	160	200	200	315	315
	Schock (kN)	61.6	123.4	160	200	250	375	200	250	375	320	400	800	700	900
	High-Velocity-Schock (kN)*6	-	-	110	130	165	245	130	165	245	210	260	520	700	-
	틸 Sinus (m/s²)	1000	1000	1000	1000	1000	1000	1000	1000	1000	800	1000	1000	1000	1000
_	Rauschen (m/s²eff)	557	700	700	700	700	700	700	700	700	560	700	700	700	700
ate	Schock (m/s² spitze)	2000	2000	2000	2000	2000	2000	2000	2000	2000	1600	2000	2000	2000	2000
ma	High-Velocity-Schock (m/s² spitze)*6	-	-	1833	1625	2000	2000	1300	1650	2000	1050	1300	2000	2000	-
Systemdaten	≥ Sinus (m/s)*3	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
ഗ	Schock (m/s spitze)	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.4	2.4	2.4	3.5	3.5
	High-Velocity-Schock (m/s spitze)*6	-	-	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	-
	চাঁঘুরী Sinus (mms-s)	51	51	51	51	51	51	100	100	100	76.2	76.2	76.2	76.2	76.2
	Mech. Maximum (mms-s)	58	60	59	62	62	62	116	116	116	86	86	86	94	94
	Last Maximum (kg)	500	1000	1000	2000	2000	2000	2000	2000	2000	2000	2000	2000	3000	3000
	Leistungsbedarf (kVA)*2	49	87	100	150	170	170	170	190	190	270	300	300	325	325
	Trennschalter (A)*3	100	175	175	300	350	350	300	350	350	-	-	-	-	-
			K060	K080	K125A	K125A	K125A	K125LS	K125LS	K125LS	K200	K200	K200	K350	K350
Je.	Masse Armatur (kg)	27	40	60	80	80	80	100	100	100	200	200	200	350	350
gerreg	Durchmesser Armatur (φmm)	320	400	446	560	560	560	560	560	560	650	650	650	760	760
	Zul. Exz.moment (N·m)	980	980	1550	2450	2450	2450	2450	2450	2450	4900	4900	4900	4900	4900
Schwi	Abmessung (mm) W × H × D	1100 × 1090 × 824	1380 × 1085 × 1000	1595 × 1200 × 1050	1776 × 1373 × 1300	1776 × 1373 × 1300	1776 × 1373 × 1300	1990 × 1546 × 1370	1990 × 1546 × 1370	1990 × 1546 × 1370	2465 × 1908 × 1740	2465 × 1908 × 1740	2465 × 1908 × 1740	3020 × 2306 × 2080	3020 × 2306 × 2080
လွ	Shaker Body Durchmesser (φmm)	760	900	1000	1100	1100	1100	1100	1100	1100	1260	1260	1260	1630	1630
	Masse (kg)	3000	3700	5000	7000	7000	7000	8000	8000	8000	19000	19000	19000	40000	40000
irker		EM4HAG-K30													EM50HAG-K350
verst	Leistung Maximum (kVA)	33	60	100	98	124	124	124	155	155	256	320	300	400	400
fungs	Abmessung (mm) W × H × D	1160 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1740 × 1950 × 850	1740 × 1950 × 850	2320 × 1950 × 850	1740 × 1950 × 850	1740 × 1950 × 850	2320 × 1950 × 850	2320 × 1950 × 850	2900 × 1950 × 850	4060 × 1950 × 850	4060 × 1950 × 850	4060 × 1950 × 850
Leis	Masse (kg)	1300	1350	1500	2500	2600	3550	2650	3350	3550	4850	5000	6000	6200	7000
	Schwingungsregler								Schwingung						
מ	Kühlung								ühlung / Ver						
lun	Wasserbedarf primär (I/min)	195	260	390	390*5	390*5	390*5	390*5	390*5	390*5	650*5	650*5	650*5	690*5	650*5
Kühlung	Wamelbetzer Abmessung (mm) W × H × D														
_	Masse (kg)	400	400	400	400	400	400	400	400	400	600	600	600	950	950

^{*2} El. Anschluss: 3-phasig 380/400/415/440 V, 50/60 Hz. Für andere Anschlusswerte wird ein Transformator benötigt. *3 Bei Sweep- oder Spot-Test sollte eine Geschwindigkeit von 1,4 m/s nicht überschritten werden.

⁴ Für 400 v
5 Für weitere Informationen zum Wasser-Anschluss wenden Sie sich bitte an IMV oder Ihren Händler.
6 EUC für Export von Shakem mit mehr als 50 kN Sinus-Kraft erforderlich.
71 der Spezifikation sind die maximalen Systemparameter angegeben. Für Langzeitlests sollten 70% der angegebenen Systemparameter nicht überschritten
Ein kontinuierlicher Betrieb bei den maximalen Systemparametern kann zu Beschädigungen führen. Kontaktleren Sie IMV, wenn Sie mehr als 70 % benötiger

[&]quot;Im Falle einer Prüfung mit Breitbandrauschen, sollte die maximale Spitzenbeschleunigungen lurrien. Nontakueren sie imv, wenn sie mehr als 70 % benot "Im Falle einer Prüfung mit Breitbandrauschen, sollte die maximale Spitzenbeschleunigung kleiner als die maximal zulässige Schock-Beschleunigung sein.

"Der Frequenzbereich kann je nach verwendeten Messaufnehmern oder Regelsystemen eingeschränkt sein.

"Gewicht der Armatur und Beschleunigung können bei Kombination mit einer Kammer abweichen.

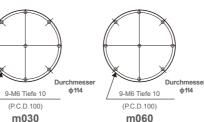
Baureihe M

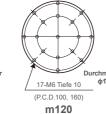
Kompakt Systeme

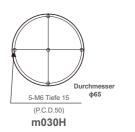
m030/MA1

Leise Schwingerreger für störungsfreie Tests

Die Testsysteme der Baureihe m arbeiten besonders leise, um Störgeräusche des Prüflings besser wahrnehmen zu können


Geräuscharmer Lauf durch integrierten Kühllüfter] Integrierter Gleichstrom-Kühllüfter. Luftselbstkühlung bei Stopp des Kühllüfters (mit Leistungsminderung).


Spezifikationen


	System	ntyp	m030/MA1-CE	m060/MA1-CE	m120/MA1-CE	m030H/MA1	m130LS/MA1-CE				
	Frequen	zbereich (Hz)	0-3000	0-3000	0-2000	1000-10000	2-1000				
		Sinus (N)	300	600	1200	380	1300				
	Nennkraft	Rauschen (N eff)	210	420	840	266	650				
		Schock (N)	300	600	1200	380	1300				
		Lastfrei (m/s²)	500	500	500	200	130				
Systemdaten	Beschl. maximum	Last 0.5kg (m/s²)	272	352	413	158	123				
		Last 1.0kg (m/s²)	187	272	352	131	118				
	Geschwindigkeit Maximum (m/s)		1.6	1.6	1.6	— *1	1.0				
	Auslenkung Maximum (mm		26	30	30	— *1	51				
	Last Maximum (kg)		15	15	120	15	100				
	Leistungsbedarf (kVA)*2		0.4	0.7	1.1	0.5	1.0				
	Gerätetyp		m030-CE	m060-CE	m120-CE		m130LS-CE				
	Armaturhalterung		Membranfeder	Membranfeder	Luftfederung	Kunststoff-Feder	Membranfeder				
	Masse A	rmatur (kg)	0.6	1.2	2.4	1.9	10				
Schwingerreger	Durchme	sser Armatur (φmm)	114	114	174	65	180				
	Abmessi	ung (mm)	φ190 × H240	φ230 × H281	φ320 × H327 * ³	φ190 × H275	W410 × H592 × D460				
	Masse (F	(g)	22	40	110	30	250				
			MA1-CE	MA1-CE	MA1-CE	MA1-CE	MA1-CE				
	Leistung	Maximum (kVA)	1.0	1.0	1.0	1.0	1.0				
Leistungsverstärker	Abmessu	ngen (mm) W × H × D	430 × 149 × 430	430 × 149 × 430	430 × 149 × 430	430 × 149 × 430	430 × 149 × 430				
	Masse (I	(g)	25	25	25	25	25				
	Kühlmet	hode			Luftkühlung						
Kühlung	Gebläse		In Schwingerreger integriert								

^{*1} Die Auslenkung bei der unteren Frequenz (1000 Hz) und maximaler Beschleunigung (200 m/s²) ist so klein, daß kein Wert angegeben wird.
*2 Versorgung Wechselspannung AC100 V/200 V or AC110 V/220 V or AC120 V/240 V ±10% 50/60 Hz; Anpasstransformator für andere Spannungen

Armatur Lochbilder (Einheit: mm)

Zubehör

Tragegriffe

Sicherer Transport durch eine oder zwei

Personen – abnehmbar *für m030 und m060

Luftpumpe

Bei Absenken der Armatur durch die Belastung mit der Prüfprobe erfolgt ein "Aufpumpen" auf die ursprüngliche

Option

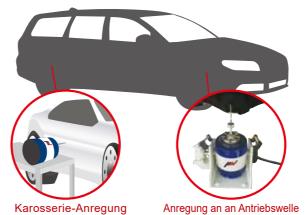
Expander

Тур	Abmessungen (mm)	Gewicht (kg)	Frequenz maximum (Hz)	m030	m060	m120
TBV-125- □-A	125 × 125 × t 20	0.9	2000	0	0	
TBV-200- □-A	200 × 200 × t 20	2.5	1500	0*	0	0
TBV-315- □-A	315 × 315 × t 30	8.5	1000		0*	0
TBV-400- □-A	400 × 400 × t 35	14.4	600			0

[&]quot;-A" Am Ende der Modellnummer steht für eine Aluminium-Legierung.

Fügen Sie den Schwingerreger Typ, bei "□" ein.

*Das als Zusatzführung verwendete Linearlager wird für die Kombination von kompaktem Schwingerreger und Erweiterung der Aufspannfläche eingesetzt. Höhere bewegte Masse durch zusätzliche Führungen


Gleittisch

Тур	Abmessungen	Frequenz maximum				
тур						m130LS
TBH-200	200 × 200	500	4	4	5.5	-
TBH-315	315 × 315	500	7.5	7.5	9	-
TBH-400	400 × 400	500	-	12.3	14	-
TBH-500	500 × 500	500	-	-	-	28

*Die Gleittischplatte ist aus einer Aluminium-Legierung.

Beispiel für Anregung an beliebigen Punkten

Durch Vibrations-Anregung der Karosserie etc. können Modal-Analysen durchgeführt werden.

Not-Aus-Schalter

Im Notfall kann das System abgeschaltet werden.

Wagen

Einfaches Verwenden des Systems an unterschiedlichen Orten

^{*3} Isolier-Unterlage (410B x 45H x 410T) mm ist Standard Equipment.

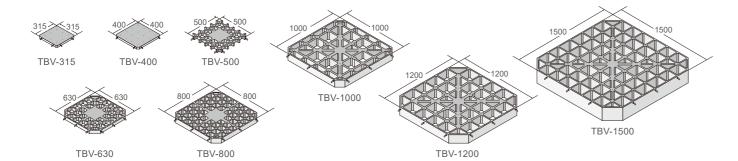
³ isoliner-Oriteriage (4100 x 4007 x 4007) immissi standard Equipment.

"In der Spezifikation sind die maximalen Systemparameter angegeben. Für Langzeittests sollten 70% der angegebenen Systemparameter nicht überschritten werden.

Ein kontinuierlicher Betrieb bei den maximalen Systemparametern kann zu Beschädigungen führen. Kontaktieren Sie IMV, wenn Sie mehr als 70% benötigen.

Frequenzbereiche in Abhängigkeit von Sensor und Signalgenerator

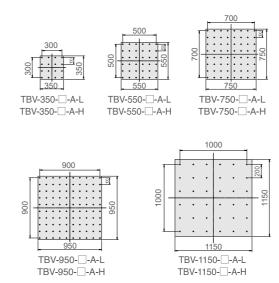
Aufspannflächenerweiterung (durchgehende Fläche)


Seitliche Führung

Optionales Zubehör

Aufspannflächenerweiterung und Aufspannwürfel

Aufspannflächenerweiterung


Ist der Durchmesser der Prüfprobe größer als die Arbeitsfläche der Armatur des Schwingerregers, kann die Befestigung der Prüfprobe mittels Aufspannflächenerweiterung oder eines Aufspannwürfels erfolgen. Je größer die Prüfprobe, umso niedriger ist die realisierbare maximale Schwingungsfrequenz. Die Auswahl der geeigneten Aufspannflächenerweiterung erfolgt je nach Abmessung der Prüfprobe und der erforderlichen maximalen Schwingungsfrequenz. Je nach Schwingerreger stehen unterschiedliche Aufspannflächenerweiterungen zur Verfügung (s. Tabelle unten).

_	Abmess.	Gew.	Frequ.	Baureihe A									Baureihe i		
Тур			Maximum (Hz)											i220	
TBV-125- □-A	125 × 125	0.9		_		_	_	_		_	_			_	
TBV-125- □-M	t 20	0.6	2000	_		_	_	_		_	_			_	
TBV-315- □-A	315 × 315	8.5		0		0	0	_		_	_)	0	
TBV-315- □-M	t 30	5.8	1000	0		0	0	_		_	_			0	
TBV-400- □-A	400 × 400	13	200	0		0	0	_		_	_			0	
TBV-400- □-M	t 30	9	600	0		0	0	_		_	_			0	
TBV-500- □-A	500 × 500	15	500	0		0	0	0		0	0			0	
TBV-500- □-M	t 40	10.4	500	0		0	0	0		0	0			0	
TBV-630- □-A	630 × 630	19	200	0		0	0	0		0	0			0	
TBV-630- □-M	t 45	12.5	360	0		0	0	0		0	0			0	
TBV-800- □-A	800 × 800	45	050	0		0	0	0		0	0	-	-	0	
TBV-800- □-M	t 70	30	350	0		0	0	0		0	0	-	-	0	
TBV-1000-□-A	1000 × 1000	110	050	0		0	0	0		0	0	-	-	_	
TBV-1000-□-M	t 110	78	350	0		0	0	0		0	0	-	-	_	
TBV-1200-□-A	1200 × 1200 t 125	180	200	_		0	0	0		0	0	-	-	_	
TBV-1500-□-A	1500 × 1500 t 200	300	200	0 0 0		-	_								
Тур			Frequ. Maximum												
1,36	(mm)	(kg)	(Hz)	J230	J240	J250	J260	K030	K060	K080	K125	K125LS	K200	K350	
TBV-125-□-A	125 × 125	0.9	2000	-	_	_		_	_	_	_	_	_		
TBV-125-□-M	t 20	0.6	2000	_	_	_		_	_	_	_	_	_		
TBV-315-□-A	315 × 315	8.5	1000	0	0	_	_	_	_	_	_	_	_	_	
TBV-315-□-M	t 30	5.8	1000	0	0	_	_	_	_	_	_	_	_	_	
TBV-400-□-A	400 × 400	13	600	0	0	_		0	_	_	_	_	_		
TBV-400-□-M	t 30	9	600	0	0	_	_	0	_	_	_	_	_	_	
TBV-500-□-A	500 × 500	15	500	0	0	0	0	0	0	0	_	_	_	_	
TBV-500-□-M	t 40	10.4	500	0	0	0	0	0	0	0	_	_	_		
TBV-630-□-A	630 × 630	19	360	0	0	0	0	0	0	0	0	0	_		
TBV-630- □-M	t 45	12.5	300	0	0	0	0	0	0	0	0	0	_	_	
TBV-800-□-A	800 × 800	45	250	0	0	0	0	0	0	0	0	0	0	0	
TBV-800-□-M	t 70	30	350	0	0	0	0	0	0	0	0	0	0	0	
TBV-1000-□-A	1000 × 1000	110	350	0	0	0	0	0	0	0	0	0	0	0	
TBV-1000- □-M	t 110	78	350	0	0	0	0	0	0	0	0	0	0	0	
TBV-1200- □-A	1200 × 1200 t 125	180	200	-	0	0	0	0	0	0	0	0	0	0	
TBV-1500-□-A	1500 × 1500 t 200	300	200	-	_	0	0	0	0	0	0	0	0	0	

Typbezeichnungen mit der Endung "

" stehen für Al-Legierung; Modellbezeichnungen der Shaker in Rechteckklammern. *Die Angaben in der vorstehenden Tabelle gelten für die IMV-Standardausführungen. Andere Lösungen auf Anfrage.

Тур	Abmess. (mm)	Gew. (kg)	Frequ. Maximum (Hz)	Gewindeeinsätze	Raster								
TBV-350- □-A-L	(**)												
TBV-350-□-A-H													
TBV-550-□-A-L	550 × 550 × t 30	17	300	M10 Tiefe25	□ 100 mm								
TBV-550-□-A-H	550 × 550 × t 60	30	600	M10 Tiefe25	□ 100 mm								
TBV-750-□-A-L	750 × 750 × t 38	30	200	M10 Tiefe25	□ 100 mm								
TBV-750- □ -A-H	750 × 750 × t 75	55	400	M10 Tiefe25	□ 100 mm								
TBV-950-□-A-L	950 ×950 × t 45	45	150	M10 Tiefe25	□ 100 mm								
TBV-950-□-A-H	950 × 950 × t 90	80	300	M10 Tiefe25	□ 100 mm								
TBV-1150- □-A-L	1150 × 1150 × t 60	90	120	M10 Tiefe25	□ 200 mm								
TBV-1150- □-A-H	1150 × 1150 × t 120	160	240	M10 Tiefe25	□ 200 mm								
Typbezeichnungen	vpbezeichnungen mit der Endung "⊓" stehen für Al-Legierung: Modellbezeichnungen												

der Shaker in Rechteckklammern.

Bitte kontaktieren Sie uns für weitere Informationen

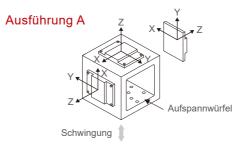
Optionen für vertikalen Tisch

Seitliche Führung, zusätzliche Luftfeder

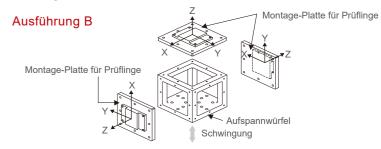
Die folgende Option erhöht das zulässige Kippmoment der Aufspannflächenerweiterung (Head Expander).

- Zusätzliches Führungssystem Ermöglicht Versuche für große Prüflinge mit ungleichmäßiger Gewichtsverteilung.
- Zusätzliche Luftfedern Erhöht die Lastkompensation für Prüflinge und Vorrichtungen mit größerem Gewicht.
- *Optionen nicht für alle Modelle verfügbar

Traglast-Erhöhung


Hochfrequenzschwingungen

Aufspannflächenerweiterung mit besonders geringer Masse und doppelt-konischer Form für hervorragende Dämpfungseigenschaften.



Aufspannwürfel

Der Aufspannwürfel dient der Prüfung von Proben in mehreren Richtungen, d.h. X-, Y- und Z-Achse. Es stehen zwei IMV-Aufspannwürfel zur Verfügung. Ausführung A und B. Bei der Ausführung A erfolgt die Befestigung der Prüfproben seitlich. Bei der Ausführung B erfolgt das Aufspannen der Prüfproben mit Aufspannplatten entsprechend der Darstellung.

		() () ()	
	Aufspannwürfe	(Austührung A)	
	Abmess. (mm)	Gew. (kg)	Frequ. Maximum (Hz)
TCJ-A150- □-A	150 × 150 × 150	5.5	2000
TCJ-A150- □-M	130 × 130 × 130	4	2000
TCJ-A160- □-A	160 × 160 × 160	6.5	2000
TCJ-A160- □-M	100 × 100 × 100	4.6	2000
TCJ-A200- □-A	200 × 200 × 200	8	1000
TCJ-A200- □-M	200 ^ 200 ^ 200	5.6	1000
TCJ-A250- □-A	250 × 250 × 250	13.5	650
TCJ-A250- □-M	230 ^ 230 ^ 230	9.5	030
TCJ-A300-□-A	300 × 300 × 300	20	400
TCJ-A300- □-M	300 ~ 300 ~ 300	14	400

	Aufspannwürfel	(Ausführung B)		Montage-Platt	e für Prüflinge
Тур	Abmess. (mm)	Gew. (kg)	Gew. (kg) Frequ. Maximum (Hz)		Gew. (kg)
TCJ-B150-□-A	150 × 150 × 150	3.5	2000	TCJ-B150-P-A	1.5
TCJ-B150-□-M	130 × 130 × 130	2.5	2000	TCJ-B150-P-M	1.1
TCJ-B160- □ -A	160 × 160 × 160	4	2000	TCJ-B160-P-A	1.7
TCJ-B160-□-M	160 × 160 × 160	2.8	2000	TCJ-B160-P-M	1.3
TCJ-B200-□-A	200 × 200 × 200	10	2000	TCJ-B200-P-A	3.5
TCJ-B200-□-M	200 ^ 200 ^ 200	7	2000	TCJ-B200-P-M	2.5
TCJ-B250-□-A	250 × 250 × 250	20	1000	TCJ-B250-P-A	4.5
TCJ-B250-□-M	230 ^ 230 ^ 230	14	1000	TCJ-B250-P-M	3.2
TCJ-B300-□-A	300 × 300 × 300	20	600	TCJ-B300-P-A	6.5
TCJ-B300-□-M	300 ^ 300 ^ 300	14	000	TCJ-B300-P-M	4.5

Typbezeichnungen mit der Endung "

" stehen für Al-Legierung; Modellbezeichnungen der Shaker in Rechteckklammern.

Gleittisch

Gleittische

Der Gleittisch dient der horizontalen Prüfung großer oder schwerer Prüfproben. Der Gleittisch arbeitet nahezu reibungsfrei in horizontaler Richtung, sichert hohe Genauigkeit der Signale und ist für die Aufnahme hoher Lasten geeignet.

■ Typen und Merkmale von Gleittischen

MS: Gleichzeitige Verwendung von mechanischen Lagern und Ölfilmen

Verwendet eine kombinierte Struktur aus einem hochsteifen Linearlager und einer Ölfilmmethode, die die Schwingungsdämpfung verbessern soll.

Тур	TBH-550-□-A-MS			TBH-750-□-A-MS			TE	BH-950-□-A-N		TB	H-1150-□-A-MS	
Abm. (mm)		550 × 550						950 × 950				
Nick-Moment (kN·m)	1100			2200				2200			4600	
Last maximum (kg)	700			1000				1500			2000	
Schwingerreger	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew*	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)
A11	55	2000	40	93	2000	40	138	1250	40	-	-	-
A22	58	2000	40	95	2000	40	140		40	198	800	40

Тур		TBH-550-□-A-MS			TBH-750-□-A-MS TBH-950-□-A-MS				TBH-1150-□-A-MS			
Abm. (mm)		550 × 550								1150 × 1150		
Nick-Moment (kN·m)	1100		2200			2200			4600		
Last maximum (kg)		700			1000		1500			2000		
Schwingerreger	Gew*	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)
A30	60			100			145			203		
A45	68	2000	40	108	2000	40	450	1250	40	210	800	40
A65	68			108			103	153		210		

^{*}Das Gewicht bezieht sich auf die Platte aus Aluminium.

MB: Mechanisches Lager

Als mechanische Lager werden Linearlager verwendet. Mit hoher Steifigkeit, Belastbarkeit und großer Auslenkung ermöglichen diese Lager eine hohe Leistung des Tisches.

Eine weitere überzeugende Eigenschaft von Linearlagern ist die einfache Handhabung: Sie sind leicht und benötigen keine Hydraulik.

Тур	TBH-550-□-A-MB							
Nick-Moment (kN·m)		9300						
Last maximum (kg)	1000							
Schwingerreger	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)					
A11	46	2000	30					
A22	47	2000	30					

Тур	TE	BH-550-□-A-N		TBH-750-□-A-MB				BH-950-□-A-N			TBH-1150-□-A-MB			
Abm. (mm)														
Nick-Moment (kN·m)	9300			12700				19700		51500				
Last maximum (kg)	1000			2000				2000			2000			
Cabusinganaga	Gew*	Frequ.	Plattenstärke	Gew*	Frequ.	Plattenstärke	Gew*	Frequ.	Plattenstärke	Gew*	Frequ.	Plattenstärke		
Schwingerreger	(kg)	maximum (Hz)	(mm)	(kg)	maximum (Hz)	(mm)	(kg)	maximum (Hz)	(mm)	(kg)	maximum (Hz)	(mm)		
A30	47	2000		75	2000		106	2000		151	2000			
A45	2000 30		30	87	2000	30	114	2000	30	160	2000	40		
A65] 34	54 2000*1]	01	2000*1		114	2000*1		100	2000*1	1		

^{*1} Oberhalb von 1600 Hz rollt die Kraft mit einer Rate von -6db/Okt. ab.

*Bitte kontaktieren Sie uns wegen der Tischgröße über 1150 × 1300.

ST: Gleittisch mit Öl-Film

Die Gleittischplatte wird auf einem Öl-Film gelagert. Auf der Unterseite der Platte wird kontinuierlich ein Öl-Film erzeugt, der ein Bewegen mit niedriger Reibung ermöglicht. Die Ölpumpe ist im Gleittischgestell untergebracht. Da die bewegte Masse klein ist, gehört dieser Gleittischtyp zu der am häufigsten verkauften Variante.

Тур		BH-500-□-A-\$		TE	BH-630-□-A-9		Tt	BH-800-□-A-S				
					630 × 630							
Nick-Moment (kN·m)		0.2			0.4			0.8			1.3	
Last maximum (kg)		200			300			400			500	
Schwingerreger	Gew* (kg)	Frequ.	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)
i210		0500					_	_	_	_	_	_
i220 K030	33	2500	30	45	2000	30	65		30	100		30
K060	60	2000	50	80	2000	50	115	2000	50	170	1250	50
K080	_	_	_	60		50	113		50	170		50

^{*}die bewegte Masse bezieht sich eine Platte aus Aluminium-Legierung. Es ist möglich, Magnesium zu verwenden. Kontaktieren Sie uns für weitere Informationen.

TT-L: Hydrostatisches Lager (Niederdruck)/TT-H: Hydrostatisches Lager (Hochdruck)

Mehrere hydrostatische Lager werden auf dem sehr steifen Sockel angeordnet, um die Gleittischplatte zu lagern. Speziell dafür entwickelte hydrostatische Lager ermöglichen eine hohe Last und erlauben hohe Momente. Die Lager sind in wärmegedämmten Wannen montiert und der Tisch kann als ganze Einheit direkt in einer Temperaturkammer verwendet werden. Somit sind keine Thermobarrieren und kein Faltenbalg zur Anbindung an den Kammerboden erforderlich.

TT-L: Hydrostatic Bearing (Low Pressure)

Тур		TBH-		A-TTL	TBH-		4-TTL			A-TTL			A-TTL	TBH-1		A-TTL	TBH-1		-A-TTL	TBH-1		A-TTL	TBH-2		A-TTL
Abm. (mn						30 × 63									00 × 12										
Nick-Moment (k	:N-m)		1.1			1.1			2.2			2.2			4.6			6.5			10			10	
Last maximun	n (kg)		700			1000			1000			1500			2000			2000			2500			2500	
Schwingerre	nar (Gew*	Frequ.	Plattenstärke	Gew*	Frequ.	Plattenstärke	Gew*	Frequ.	Plattenstärke	Gew*	Frequ.	Plattenstärke	Gew*	Frequ.	Plattenstärke									
Schwingerie	yei	(kg)	maximum (Hz)	(mm)	(kg)	maximum (Hz)	(mm)	(kg)	maximum (Hz)	(mm)	(kg)	maximum (Hz)	(mm)	(kg)	maximum (Hz)	(mm)									
i210		40	0000		53	2000		75	1600		105														
i220		43	2000	30	55	2000	30	78	1600	30	108		30												
J230		50		30	63		30	85		30	118	1000	30	280	900	50	450	800	50	650	600	50	800	500	50
J240		50	1600		03	1600		00	1250		110	1000		200	900	50	450	800	50	030	000	50	800	300	30
J250		70	1000	40	85	1000	40	445	1230	40	155		40												
J260		10		40	0.5		40	115		40	155		40												

*die bewegte Masse bezieht sich eine Platte aus Aluminium-Legierung. Es ist möglich, Magnesium zu verwenden. Kontaktieren Sie uns für weitere Informationen.

Тур	TBH-	550-□-	A-TTL	TBH-7	750-□-	4-TTL	TBH-9	950-□-	A-TTL
Abm. (mm)									
Nick-Moment (kN·m)		1100			2200			2200	
Last maximum (kg)		1000			1500			1500	
Schwingerreger	Gew* (kg)	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)	Gew* (kg)	Frequ.	
A11	52								
A22	53			-	-	-	-	-	-
A30	55	2000	30	78			105		
A45	0.4			89	1600	30	115	1000	30
A65	64	2000*		03			113		

^{*}Oberhalb von 1600 Hz rollt die Kraft mit einer Rate von -6db/Okt. ab.
*
i ist die Modellnummer des Schwingerreger.

TT-H: Hydrostatic Bearing (High Pressure)

Тур			A-TTH	HB-6		\-TTH	HB-8		-TTH			A-TTH	HB-12		HTT-A			A-TTH			A-TTH	HB-20		A-TTH
														00 × 12									00 × 20	
Nick-Moment (kN·m)		4			4			7.7			7.7			16			22			48			48	
Last maximum (kg)		800			1200			1600			2000			2000			2000			3000			3000	
Schwingerreger	Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.		Gew*	Frequ.		Gew* (kg)	Frequ.		Gew*	Frequ. maximum (Hz	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	
i210	60	2000		70	2000		115	2000		165	1250													
i220	63	2000		83	2000		118	2000		168	1230													
J230	68			88			125			175														
J240	70	1600		90	1600		130	1250		178	1000													
J250	83	1000		100	1000		143	1230		188	1000													
J260	00		50	100		50	143		50	100		50	280	900	50	450	800	50	650	600	50	800	500	50
K030	68			88			123			173														
K060	93	2000		108	2000		145	2000		193	1250													
K080	78	2000		95	2000		133	2000		180	1230													
K125A	103			118			155			205														
K125LS	113	1600		128	1600		170	1250		220	1000													

^{*}die bewegte Masse bezieht sich eine Platte aus Aluminium-Legierung. Es ist möglich, Magnesium zu verwenden. Kontaktieren Sie uns für weitere Informationen.

Тур	TBH-	550-□-	A-TTH	TBH-7	750-□-	A-TTH	TBH-9	950-□-/	A-TTH
Abm. (mm)									
Nick-Moment (kN·m)		4000			7700			7700	
Last maximum (kg)		1200			2000			2000	
Schwingerreger	Gew* (kg)	Frequ.	Plattenstärke (mm)	Gew* (kg)	Frequ.	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)
A11	52								
A22	53			-	-	_	_	-	-
A30	53	2000	30	78			105		
A45	00			89	1600	30	115	1000	30
A65	66	2000*		03			113		

^{*}Oberhalb von 1600 Hz rollt die Kraft mit einer Rate von -6db/Okt, ab

^{*□} ist die Modellnummer des Schwingerreger.

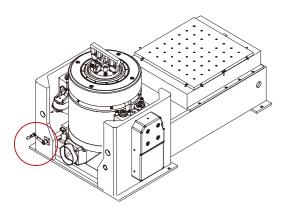
^{*}Das Gewicht bezieht sich auf die Platte aus Aluminium.


^{*□} ist die Modellnummer des Schwingerreger.

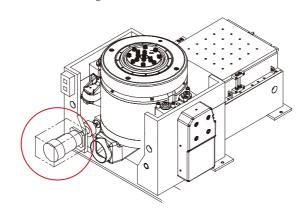
^{*□} ist die Modellnummer des Schwingerreger.

■ T-Filmlagerung

Tische mit T-Film-Lager sind bestehen aus mehreren in Reihe angeordneten rechteckigen Aufnahmeelementen unter dem Tisch. Jedes Lager hat einen nach US-Patent geschützten hydrostatischen "T-Träger" sowie einen hydrostatischen Film, auf dem die Gleittischplatte ruht. Tische mit T-Film-Lager, mit denen Anregungen von ausgezeichneter Linearität erzielt werden, werden von Forschungslabors und Betrieben der Luftfahrtindustrie als optimal bewertet.



■ Optionen für Gleittische


Schwenkgetriebe

Drehen des Schwingerregers mittels Handkurbel. *Option für i210 nicht verfügbar.

Schwenken mit Motorantrieb

Elektrischer Schwenkantrieb des Schwingerregers. Der Motorantrieb für die Änderung der Anregungsrichtung wird optional bei Systemen mit Schwenkgetriebe montiert.

LPT (Niederdruck-Gleittische)

Die Gleittische der Serie LPT sind für horizontale Prüfungen kleiner und mittelgroßer Produkte mit niedrigem Schwerpunkt ausgelegt.

- Leichte Magnesium-Gleitplatte als Standard.
- Der präzisionsgeschliffene Granitsockel bietet eine reibungsarme Oberfläche.
- Gier-Begrenzung durch Niederdruck-Führungslager in Kombination mit dem Armatur-Führungssystem.
- Eigenständige Hydraulikpumpe, Vorratsbehälter und Filter.

Spezifikationen

LPT Series (Niederdruck-Gleittische)

Gleittisch-Modell	LPT600	LPT700	LPT800	LPT900	LPT1000	LPT1200
Last Maximum (kg)	500	650	750	1000	1100	1500
Gleitplatte Arbeitsfläche - quadratisch (mm)	600	700	800	900	1000	1200
Material der Gleitplatte	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium
Dicke der Gleitplatte (mm)	37	37	37	37	37	37
Gleitplatte mit Armatur-Raster (mm)	100 raster	100 raster	100 raster	100 raster	100 raster	100 raster
Masse der Gleitplatte - Magnesium (kg)	27	35	45	60	70	100
Anzahl von Niederdruck-Führungslagern	2	2	2	2	2	2
Masse pro Niederdruck-Führungslager(kg)	0.65	0.65	0.65	0.65	0.65	0.65
Gewicht des Koppelstücks	D	as Gewicht des Koppelstücl	ks hängt vom Armatur-Durcl	hmesser des gewählten Sha	kers ab - siehe Tabelle unt	en
Moment Nicken (kNm)	5.09	7.95	11.7	16.49	22.44	38.32
Moment Rollen (kNm)	5.03	7.82	11.51	16.23	22.11	37.86
Moment Gieren (kNm)	0.46	0.59	0.72	0.85	0.99	1.25

Gewicht des Koppelstücks

Schwingprüfsystem						A45, A74, J250, J60, K080	K125LS
Gewicht des Koppelstücks (kg)	2.4	6	9	11	13	15	23
Koppelstück passend zum Armatur-Durchmesser(mm)	190	200	290	320	400	445	550
Größe Gewindeeinsätze	M8	M10	M10	M10	M10	M12/M16	M16

HBT (Hochdruck-Gleittische)

Die Tische der HBT-Serie bieten ein hohes Kippmoment und eine hohe Quersteifigkeit. Das Konzept kombiniert einen Standard-Ölfilm-Gleittisch mit hydrostatischen Hochdruck-Lagern, diese werden mit über 200 bar betrieben. So wird ein hohes dynamisches Moment gewährleistet, während die Dämpfungseigenschaften des Ölfilms erhalten bleiben.

- Leichte Magnesium-Gleitplatte als Standard.
- Der präzisionsgeschliffene Granitsockel bietet eine reibungsarme Oberfläche.
- Hydrostatische Lager erlauben hohe Nick-, Roll- und Giermomente.
- Hohe dynamische Momentenbegrenzung.
- Zu den Optionen gehören: gebohrte Gleitplatten für Tests bei tiefen Temperaturen, Dichtsätze für Gleittische zur Kontrolle von chemischer Kontamination und Ölnebel.

Spezifikationen

HBT Series (Hochdruck-Gleittische)

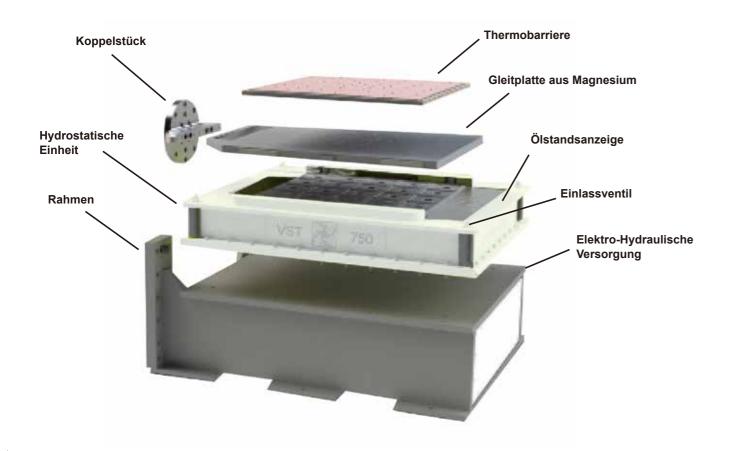
TID I Series (Hocharack-Gleit)	ische)							
Gleittisch-Modell	HBT600	HBT700	HBT800	HBT900	HBT1000	HBT1200	HBT1500	HBT1800
Last Maximum (kg)	4250	5000	6000	6000	8000	10000	12000	13500
Gleitplatte Arbeitsfläche - quadratisch (mm)	600	700	800	900	1000	1200	1500	1800
Material der Gleitplatte	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium
Dicke der Gleitplatte (mm)	50	50	50	50	50	50	50	60
Gleitplatte mit Armatur-Raster (mm)	100 grid	100 grid	100 grid	100 grid	100 grid	100 grid	100 grid	100 grid
Masse der Gleitplatte - Magnesium (kg)	40	47	60	77	95	135	243	420
Anzahl von Niederdruck-Führungslagern	2	2	2	2	2	3	4	4
Masse pro Niederdruck-Führungslager(kg)	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
Gewicht des Koppelstücks		Das Gewicht de	es Koppelstücks hän	gt vom Armatur-Durc	hmesser des gewähl	ten Shakers ab - sie	he Tabelle unten	
Moment Nicken (kNm)	23.58	30.98	39	50.33	62.82	91.77	161.7	235.8
Moment Rollen (kNm)	24.65	30.71	37.67	45.66	54.81	97.11	129.2	191.1
Moment Gieren (kNm)	18.05	23.62	28.02	34.60	/11 37	54.71	03.4	117.8

Gewicht des Koppelstücks

Schwingprüfsystem	A20, A30, J240	A45, A74, J250, J60, K060, K080	K100LS, K125LS	K200
Gewicht des Koppelstücks (kg)	9	15	23	28
Koppelstück passend zum Armatur-Durchmesser(mm)	290	445	560	650
Größe Gewindeeinsätze	M10	M12/M16	M16	M16

Vakuum-Gleittisch (VST)

Neues Konzept für einen Gleittisch: Vakuum und Öldruck gleichen sich aus


■ Merkmal

- Große Auslenkung bis zu 160 mm
- Austauschbare Tische Erfüllen Kundenanforderungen (Option)

- Geringer Aufwand zum Ausrichten
- Geringer Wartungsaufwand

■ Details des VST



■ Spezifikationen

Vakuum-Gleittisch (VST)

Abmessung	en	600 × 600	750 × 750	900 × 900	1050 × 1050	1200 × 1200	1500 × 1500
Gewicht (kg)	Magnesium	35	50	67	88	111	167
	Nicken	7.7	15	25.9	41.2	61.4	120
Zul Eus manant (Ishlm)	Rollen	7.7	15	25.9	41.2	61.4	120
Zul. Exz.moment (kNm)	Gieren Dauerhaft	2.8	3.7	4.7	5.6	6.5	8.4
	Gieren Maximal	23.4	31.2	39	46.8	54.6	70.2
Auslenkung Maximum (mm)		160	160	160	160	160	160
Last Maximum (kg)		640	1000	1450	1950	2550	4000
Frequ. Maximum (Hz)		2000	2000	2000	2000	2000	2000
Resonanzfrequenz (Hz)		1250	1050	950	830	730	600
Standard Aufspannraster	100 mm Raster	36	64	81	121	144	225
Gewicht Koppelstück (kg) *	Aluminium	15	15	15	15	15	15

*TBC, Abhängig von Armatur

[Basissysteme] Schwingprüfsysteme [Basissysteme] Schwingprüfsysteme

Gleittisch

Rail Tisch (RT)

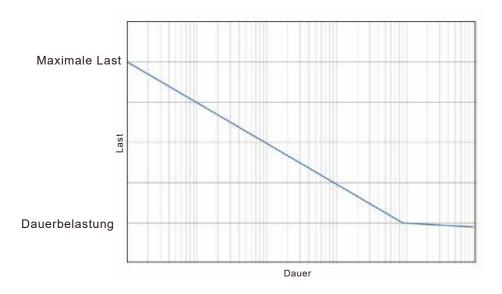
Die Hauptinnovation besteht in der Verwendung von Kugelumlaufführungen und einer besonderen Dämpfungstechnik bei dem die Gleittplatte aus mehreren Lagen aufgebaut wird. Das innovative System zeichnet sich durch hohe Zuverlässigkeit und hervorragende Leistung aus und basiert auf langjähriger Felderfahrung.

Robust und langlebig

Oxidationsbeständig

• Einfache Reparatur und Wartung

■ Merkmal


- Einfach in der Anwendung
- Kein Öl
- Keine elektrische Versorgung Sehr gutes dynamisches Verhalten
- Keine Druckluft
- Große Auslenkung

hriger

■ Haltbarkeit der Lager

Das hohe technische Niveau des Rail Tisches führte zu einer Verlängerung der Arbeitszeit zwischen jeder Wartung. Vor der Versuchsdurchführung kann der Anwender einfach die Tischbelastung berechnen und durch Vergleich der "dauerhaft" und "maximalen" Lastwerte den Verschleiß bewerten, den der Test für den Tisch verursacht. Damit lassen sich die Auswirkungen auf die Wartung abschätzen.

Wichtig: Die Wartung ist sehr einfach durchzuführen, es werden lediglich die Lager ausgewechselt.

■ Spezifikationen

Rail Tisch (RT)

Abmessunge	en	450 × 450	600 × 600	750 × 750	900 × 900	1050 × 1050	1200 × 1200
Gewicht (kg)	Aluminium	30	50	68	96	125	160
Ocwioni (kg)	Magnesium	23	40	53	75	98	125
	Nicken Dauerhaft	1.7	5.7	7.4	16.2	19.3	19
	Nicken Maximal	22.3	71.6	93	203.4	241.4	238.3
7.1 For recovery (lables)	Rollen Dauerhaft	1.3	4.7	6.5	14.6	17.6	20.6
Zul. Exz.moment (kNm)	Rollen Maximal	17.1	59.9	81.3	182.5	220.6	258.6
	Gieren Dauerhaft	1.7	5.7	7.4	16.2	19.3	19
	Gieren Maximal	22.3	71.6	93	203.4	241.4	238.3
Auslenkung Maximum (mm)		160	160	160	160	160	160
Last Maximum (kg)		414	620	931	1241	1654	1654
Frequ. Maximum (Hz)		2000	2000	2000	2000	2000	2000
Resonanzfrequenz (Hz)		1400	1250	1050	950	830	700
Standard Aufspannraster	100 mm Raster	25	36	64	81	121	121
Gewicht Koppelstück (kg) *	Aluminium	15	15	15	15	15	15
Gewicht Thermobarriere (kg)		9	13.7	24	31	42	55

*TBC, Abhängig von Armatur

Aufspannungen, Schwingungsdämpfung, Verstärkungen

Aufspannungen

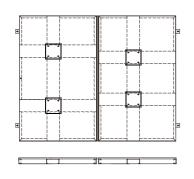
IMV empfiehlt unterschiedliche Vorrichtungen je nach Prüfungsbedingungen. Neben Würfel- und L-Form, die in der Mehrzahl der Fälle zur Anwendung kommen, bietet IMV Vorrichtungen an, die der Form der Prüfproben des Kunden annähernd entsprechen.

Schwingungsdämpfung

IMV liefert optional Schwingungsisolatoren. Isolatoren vermeiden, dass Schwingungen in den Boden und auf andere tragende Teile des Gebäudes übertragen werden.

■ Isolationsunterlage

Die einfachste Methode zur Isolation ist, den Schwingerreger auf Unterlagen zu stellen.


■ Luftfedersockel

Der Schwingerreger wird direkt durch unter der Grundplatte angeordnete Luftfedern aufgenommen. Mit dieser Lösung werden Schwingungen (über 5 Hz) wirksam gedämpft.

Verstärkungen

■ Auflage zur Lastverteilung

Die Auflage sorgt für die Verteilung der auf den Boden wirkenden Last bei geringer Tragfähigkeit.

Optionales Zubehör

Schallschutzbox, Luftzuführung, Flexibler Schlauchanschluss

Schallschutzbox

Eine Schallschutzbox für das Kühlgebläse verringert den Lärm in der Umgebung, wenn der Lüfter nicht außerhalb des Raumes stehen kann.

Innenseite

Luftzuführung

Bei herkömmlichen Schwingprüfsystemen mit Luftkühlung erfolgt die Ansaugung der Kühlluft für den Schwingerreger aus dem Betriebsraum. Bei der konzentrierten Ansaugung wird die Luft von außen angesaugt, so dass Raumtemperatur und Druckverhältnisse nicht verändert werden.

2-Achsen-Wechsel Systeme

Baureihe DC » P.35

3-Achsen-Wechsel Systeme

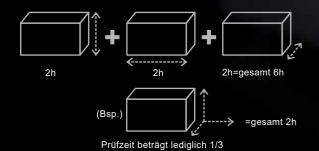
Baureihe TC

2-Achs-Simulations Systeme

Baureihe DS » P.37

3-Achs-Simulations Systeme

Schwingprüfanlage mit 6 Freiheitsgraden


Verkürzung der Prüfzeiten

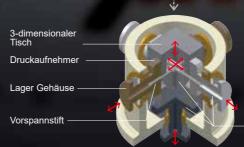
Baureihe TS

Baureihe TTS » P.39

Reproduzierbarkeit von Fehlermodi

3-Achs-Anregungssysteme benötigen für die Durchführung der Prüfung wesentlich weniger Zeit als Systeme, bei denen die Achsen einzeln angeregt werden.

Mit 3-Achs-Anregungssystemen können reale Einsatzbedingungen weitaus besser als mit Einachsanregung simuliert werden. Die Auswertung der durch die Wechselwirkung der einzelnen Achsen verursachten Fehlermodi ist möglich


1-Achssysteme sind nicht in der Lage, Schwingungen unter Praxisbedingungen abzubilden.

reproduzieren, die mit der herkömmlichen

Integriertes Kreuzkupplungslager (ICCU)

Mit ICCU steht aus der Entwicklung von IMV eine Lösung zur Simultananregung von 3 Achsen zur Verfügung

Hochpräzise Mehrachsen-Mehrpunkt-Regelung

Die Regelung kann die vom Prüfling und der Aufspannung verursachten Rotationsmomente kompensieren und die im Feld gemessenen Beschleunigungen genau reproduzieren

[Mehrachssysteme] Schwingprüfsysteme [Mehrachssysteme] Schwingprüfsysteme

Baureihe DC

2-Achsen-Wechsel Systeme

■ Spezifikationen

	Syster	mtyp	DC-1000-4H	DC-1000-6H	DC-1000-8H	DC-1000-10M	DC-2000-5H	DC-2000-8M	DC-2000-10M	DC-2000-15M	DC-3000-5H	DC-3000-8M
	Schwin	gungstisch (mm)	□400	□600	□800	□1000	□500	□800	□1000	□1500	□500	□800
		Sinus (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Nennkraft	Rauschen (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
		Schock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Beschl.N	Maximum (m/s²)	108	75	54	32	150	81	67	28	196	140
	Geschw	(m/s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Systemdaten	Ausl.Ma	ximum (mms-s)	51	51	51	51	51	51	51	51	51	51
	Masse A	Armatur (kg)	90	130	180	300	130	240	290	680	150	210
		Horizontal (Hz)	1000	800	700	350	800	500	350	250	800	500
	Frequenz	Vertikal (Hz)	1000	1000	700	500	800	800	500	350	800	800
	Last Ma	ximum (kg)	100	100	200	200	200	300	500	500	200	300
	Leistung	sbedarf (kVA)	25	25	25	25	43	43	43	43	52	52
	Wasserb	edarf primär (L/min)	_	_	_	_	-	_	_	-	_	_
	Cuata	en for un	DC-3000-10M	DC-3000-15M	DC-5000-6H	DC-5000-8H	DC-5000-10M	DC-5000-15M	DC-6000-6H	DC-6000-8H	DC-6000-10M	DC 6000 15M
	System	gungstisch (mm)	1000	1500	□600			1500	□600			
	Schwing											
		J (,				□800	1000			800	1000	1500
		Sinus (kN)	29.4	29.4	49	49	49	49	61.7	61.7	61.7	61.7
	Nennkraft	Sinus (kN) Rauschen (kN)	29.4 14.7	29.4 14.7	49 29.4	49 29.4	49 24.5	49 24.5	61.7 37	61.7 37	61.7 30.8	61.7 30.8
		Sinus (kN) Rauschen (kN) Schock (kN)	29.4 14.7 44.1	29.4 14.7 44.1	49 29.4 73.5	49 29.4 73.5	49 24.5 58.8	49 24.5 58.8	61.7 37 92.5	61.7 37 92.5	61.7 30.8 74	61.7 30.8 74
	Beschl.N	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²)	29.4 14.7 44.1 91	29.4 14.7 44.1 47	49 29.4 73.5 350	49 29.4 73.5 204	49 24.5 58.8 163	49 24.5 58.8 59	61.7 37 92.5 385	61.7 37 92.5 268	61.7 30.8 74 102	61.7 30.8 74 75
	Beschl.N Geschw	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s)	29.4 14.7 44.1 91 1.0	29.4 14.7 44.1 47 0.9	49 29.4 73.5 350 1.0	49 29.4 73.5 204 1.0	49 24.5 58.8 163 0.9	49 24.5 58.8 59 0.9	61.7 37 92.5 385 1.0	61.7 37 92.5 268 1.0	61.7 30.8 74 102 0.9	61.7 30.8 74 75 0.9
Systemdaten	Beschl.M Geschw Ausl.Ma	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s)	29.4 14.7 44.1 91 1.0 51	29.4 14.7 44.1 47 0.9 51	49 29.4 73.5 350	49 29.4 73.5 204 1.0 51	49 24.5 58.8 163 0.9 51	49 24.5 58.8 59 0.9 51	61.7 37 92.5 385 1.0 51	61.7 37 92.5 268 1.0 51	61.7 30.8 74 102 0.9 51	61.7 30.8 74 75 0.9 51
Systemdaten	Beschl.N Geschw Ausl.Ma Masse A	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s) Armatur (kg)	29.4 14.7 44.1 91 1.0 51 320	29.4 14.7 44.1 47 0.9 51 620	49 29.4 73.5 350 1.0 51	49 29.4 73.5 204 1.0 51 240	49 24.5 58.8 163 0.9 51 300	49 24.5 58.8 59 0.9 51 820	61.7 37 92.5 385 1.0 51	61.7 37 92.5 268 1.0 51	61.7 30.8 74 102 0.9 51 600	61.7 30.8 74 75 0.9 51 820
Systemdaten	Beschl.M Geschw Ausl.Ma Masse A	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s) Armatur (kg) Horizontal (Hz)	29.4 14.7 44.1 91 1.0 51	29.4 14.7 44.1 47 0.9 51	49 29.4 73.5 350 1.0 51	49 29.4 73.5 204 1.0 51	49 24.5 58.8 163 0.9 51	49 24.5 58.8 59 0.9 51	61.7 37 92.5 385 1.0 51	61.7 37 92.5 268 1.0 51	61.7 30.8 74 102 0.9 51	61.7 30.8 74 75 0.9 51
Systemdaten	Beschl.M Geschw Ausl.Ma Masse A	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s) Armatur (kg)	29.4 14.7 44.1 91 1.0 51 320	29.4 14.7 44.1 47 0.9 51 620	49 29.4 73.5 350 1.0 51	49 29.4 73.5 204 1.0 51 240	49 24.5 58.8 163 0.9 51 300	49 24.5 58.8 59 0.9 51 820	61.7 37 92.5 385 1.0 51	61.7 37 92.5 268 1.0 51	61.7 30.8 74 102 0.9 51 600	61.7 30.8 74 75 0.9 51 820
Systemdaten	Beschl.N Geschw Ausl.Ma Masse A Maximale Frequenz	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s) Armatur (kg) Horizontal (Hz)	29.4 14.7 44.1 91 1.0 51 320 350	29.4 14.7 44.1 47 0.9 51 620 250	49 29.4 73.5 350 1.0 51 140 800	49 29.4 73.5 204 1.0 51 240 700	49 24.5 58.8 163 0.9 51 300 350	49 24.5 58.8 59 0.9 51 820 250	61.7 37 92.5 385 1.0 51 160 800	61.7 37 92.5 268 1.0 51 230 700	61.7 30.8 74 102 0.9 51 600 350	61.7 30.8 74 75 0.9 51 820 250
Systemdaten	Beschl.N Geschw Ausl.Ma Masse A Maximale Frequenz Last Ma	Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s) Armatur (kg) Horizontal (Hz) Vertikal (Hz)	29.4 14.7 44.1 91 1.0 51 320 350 500	29.4 14.7 44.1 47 0.9 51 620 250 350	49 29.4 73.5 350 1.0 51 140 800 1000	49 29.4 73.5 204 1.0 51 240 700 800	49 24.5 58.8 163 0.9 51 300 350 500	49 24.5 58.8 59 0.9 51 820 250 350	61.7 37 92.5 385 1.0 51 160 800 1000	61.7 37 92.5 268 1.0 51 230 700 800	61.7 30.8 74 102 0.9 51 600 350 500	61.7 30.8 74 75 0.9 51 820 250 350

In Abhängigkeit vom Referenzspektrum oder anderen Betriebsbedingungen (z.B. dynamische Eigenschaften Prüfling) kann das Ist-Spektrum vom Referenz-Spektrum abweichen

Baureihe TC

3-Achsen-Wechsel Systeme

■ Spezifikationen

	Schwing	gungstisch (mm)	400	□600	□800	□1000	□500	□800	□1000	□1500	□500	□800
		Sinus (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Nennkraft	Rauschen (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
		Schock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Beschl.I	Maximum (m/s²)	98	65	42	33	163	98	65	30	196	113
	Geschw	(m/s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Systemdaten	Ausl.Ma	ximum (mms-s)	51	51	51	51	51	51	51	51	51	51
	Masse A	Armatur (kg)	100	150	230	290	120	200	300	640	150	260
	Maximale	Horizontal (Hz)	1000	800	700	350	800	500	350	250	800	500
	Frequenz	Vertikal (Hz)	1000	1000	700	500	800	800	500	350	800	800
	Last Maximum (kg)		100	100	200	200	200	300	500	500	200	300
	Leistungsbedarf (kVA)		27	27	27	27	43	43	43	43	52	52
	Wasserbedarf primär (L/min)		_	_	_	-	-	_	_	_	_	_
	0 1		TO 2000 40M	TO 2000 45M	TO 5000 CLI	TO 5000 011	TO 5000 40M	TO 5000 45M	TC-6000-6H	TO 0000 011	TO 0000 40M	TO 0000 45M
	Syster		TC-3000-10M	TC-3000-15M	TC-5000-6H	TC-5000-8H	TC-5000-10M	TC-5000-15M		TC-6000-8H	TC-6000-10M	TC-6000-15M
	Schwing	gungstisch (mm)	□1000	□1500	□600	□800	□1000	□1500	□600	□800	□1000	□1500
		Sinus (kN)										
		Silius (KIV)	29.4	29.4	49	49	49	49	61.7	61.7	61.7	61.7
	Nennkraft	Rauschen (kN)	14.7	29.4 14.7	49 29.4	49 29.4	49 24.5	49 24.5	61.7 37	61.7 37	61.7 30.8	61.7 30.8
	Nennkraft	(/		-								
		Rauschen (kN)	14.7	14.7	29.4	29.4	24.5	24.5	37	37	30.8	30.8
		Rauschen (kN) Schock (kN) Maximum (m/s²)	14.7 44.1	14.7 44.1	29.4 73.5	29.4 73.5	24.5 58.8	24.5 58.8	37 92.5	37 92.5	30.8 74	30.8 74
Systemdaten	Beschl.I Geschw	Rauschen (kN) Schock (kN) Maximum (m/s²)	14.7 44.1 73	14.7 44.1 43	29.4 73.5 306	29.4 73.5 222	24.5 58.8 158	24.5 58.8 67	37 92.5 342	37 92.5 257	30.8 74 199	30.8 74 84
	Beschl.I Geschw Ausl.Ma	Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s)	14.7 44.1 73 1.0	14.7 44.1 43 0.9	29.4 73.5 306 1.0	29.4 73.5 222 1.0	24.5 58.8 158 0.9	24.5 58.8 67 0.9	37 92.5 342 1.0	37 92.5 257 1.0	30.8 74 199 0.9	30.8 74 84 0.9
Systemdaten	Beschl.I Geschw Ausl.Ma Masse A	Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s)	14.7 44.1 73 1.0 51	14.7 44.1 43 0.9 51	29.4 73.5 306 1.0 51	29.4 73.5 222 1.0 51	24.5 58.8 158 0.9 51	24.5 58.8 67 0.9 51	37 92.5 342 1.0 51	37 92.5 257 1.0 51	30.8 74 199 0.9 51	30.8 74 84 0.9 51

Leistungsbedarf (kVA)

Baureihe DS

2-Achs-Simulations Systeme

DS-2000-4H

■ Spezifikationen

			DS-1000-4H	DS-1000-6H	DS-1000-8H	DS-1000-10M	DS-2000-5H	DS-2000-8M			DS-3000-5H	DS-3000-8M
	Schwing	gungstisch (mm)	□400	□600	□800	□1000	□500	□800	□1000	□1500	□500	□800
		Sinus (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Nennkraft	Rauschen (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
		Schock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Beschl.N	Maximum (m/s²)	108	75	54	32	150	81	67	28	196	140
	Geschw	(m/s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Systemdaten	Ausl.Ma	ximum (mms-s)	51	51	51	51	51	51	51	51	51	51
	Masse A	Armatur (kg)	90	130	180	300	130	240	290	680	150	210
	Maximale		1000	800	700	350	800	500	350	250	800	500
	Frequenz	Vertikal (Hz)	1000	1000	700	500	800	800	500	350	800	800
	Last Maximum (kg)		100	100	200	200	200	300	500	500	200	300
	Leistungsbedarf (kVA)		30	30	30	30	66	66	66	66	76	76
	Wasserbedarf primär (L/min)								_	_	_	_
	Wasserb	pedarf primar (L/min)	_	_	_	_	_	_	_	_	_	_
		, , ,										
	Syster	mtyp	DS-3000-10M	DS-3000-15M	DS-5000-6H	DS-5000-8H	DS-5000-10M	DS-5000-15M	DS-6000-6H	DS-6000-8H	DS-6000-10M	DS-6000-15M
-	Syster	mtyp gungstisch (mm)	DS-3000-10M	DS-3000-15M	DS-5000-6H	DS-5000-8H	DS-5000-10M	DS-5000-15M	DS-6000-6H	DS-6000-8H	DS-6000-10M	DS-6000-15M
-	System	mtyp gungstisch (mm) Sinus (kN)	DS-3000-10M ☐ 1000 29.4	DS-3000-15M ☐ 1500 29.4	DS-5000-6H ☐600 49	DS-5000-8H □800 49	DS-5000-10M 1000 49	DS-5000-15M ☐ 1500 49	DS-6000-6H □600 61.7	DS-6000-8H 800 61.7	DS-6000-10M ☐ 1000 61.7	DS-6000-15M ☐ 1500 61.7
	System	mtyp gungstisch (mm) Sinus (kN) Rauschen (kN)	DS-3000-10M 1000 29.4 14.7	DS-3000-15M 1500 29.4 14.7	DS-5000-6H	DS-5000-8H	DS-5000-10M 1000 49 24.5	DS-5000-15M 1500 49 24.5	DS-6000-6H □600 61.7 37	DS-6000-8H	DS-6000-10M 1000 61.7 30.8	DS-6000-15M 1500 61.7 30.8
	Syster Schwing Nennkraft	mtyp gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN)	DS-3000-10M 1000 29.4 14.7 44.1	DS-3000-15M 1500 29.4 14.7 44.1	DS-5000-6H 600 49 29.4 73.5	DS-5000-8H	DS-5000-10M 1000 49 24.5 58.8	DS-5000-15M 1500 49 24.5 58.8	DS-6000-6H ☐600 61.7 37 92.5	DS-6000-8H	DS-6000-10M 1000 61.7 30.8 74	DS-6000-15M 1500 61.7 30.8 74
	Syster Schwing Nennkraft	mtyp gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²)	DS-3000-10M 1000 29.4 14.7	DS-3000-15M 1500 29.4 14.7	DS-5000-6H	DS-5000-8H	DS-5000-10M 1000 49 24.5	DS-5000-15M 1500 49 24.5	DS-6000-6H □600 61.7 37	DS-6000-8H	DS-6000-10M 1000 61.7 30.8	DS-6000-15M 1500 61.7 30.8
Svstemdaten	Syster Schwing Nennkraft Beschl.N	mtyp gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²)	DS-3000-10M 1000 29.4 14.7 44.1 91	DS-3000-15M 1500 29.4 14.7 44.1	DS-5000-6H 600 49 29.4 73.5 350	DS-5000-8H	DS-5000-10M 1000 49 24.5 58.8 163	DS-5000-15M 1500 49 24.5 58.8 59	DS-6000-6H G00 61.7 37 92.5 385	DS-6000-8H	DS-6000-10M 1000 61.7 30.8 74 102	DS-6000-15M 1500 61.7 30.8 74 75
Systemdaten	Syster Schwing Nennkraft Beschl.N Geschw Ausl.Ma	mtyp gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s)	DS-3000-10M 1000 29.4 14.7 44.1 91 1.0	DS-3000-15M 1500 29.4 14.7 44.1 47 0.9	DS-5000-6H	DS-5000-8H	DS-5000-10M 1000 49 24.5 58.8 163 0.9	DS-5000-15M 1500 49 24.5 58.8 59 0.9	DS-6000-6H G00 61.7 37 92.5 385 1.0	DS-6000-8H	DS-6000-10M 1000 61.7 30.8 74 102 0.9	DS-6000-15M 1500 61.7 30.8 74 75 0.9
	Syster Schwing Nennkraft Beschl.N Geschw Ausl.Ma Masse A	mtyp gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) r (m/s) Armatur (kg) Horizontal (Hz)	DS-3000-10M 1000 29.4 14.7 44.1 91 1.0 51	DS-3000-15M 1500 29.4 14.7 44.1 47 0.9 51	DS-5000-6H	DS-5000-8H	DS-5000-10M 1000 49 24.5 58.8 163 0.9 51	DS-5000-15M 1500 49 24.5 58.8 59 0.9 51	DS-6000-6H G00 61.7 37 92.5 385 1.0 51	DS-6000-8H	DS-6000-10M 1000 61.7 30.8 74 102 0.9 51	DS-6000-15M 1500 61.7 30.8 74 75 0.9 51
	Syster Schwing Nennkraft Beschl.N Geschw Ausl.Ma Masse A	mtyp gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) r (m/s) Armatur (kg) Horizontal (Hz)	DS-3000-10M 1000 29.4 14.7 44.1 91 1.0 51 320	DS-3000-15M 1500 29.4 14.7 44.1 47 0.9 51 620	DS-5000-6H 600 49 29.4 73.5 350 1.0 51 140	DS-5000-8H	DS-5000-10M 1000 49 24.5 58.8 163 0.9 51 300	DS-5000-15M 1500 49 24.5 58.8 59 0.9 51 820	DS-6000-6H ☐ 600 61.7 37 92.5 385 1.0 51 160	DS-6000-8H 800 61.7 37 92.5 268 1.0 51 230	DS-6000-10M 1000 61.7 30.8 74 102 0.9 51 600	DS-6000-15M 1500 61.7 30.8 74 75 0.9 51 820
	Syster Schwing Nennkraft Beschl.N Geschw Ausl.Ma Masse A Maximale Frequenz	gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) (m/s) ximum (mms-s) Armatur (kg)	DS-3000-10M 1000 29.4 14.7 44.1 91 1.0 51 320 350	DS-3000-15M 1500 29.4 14.7 44.1 47 0.9 51 620 250	DS-5000-6H 600 49 29.4 73.5 350 1.0 51 140 800	DS-5000-8H	DS-5000-10M 1000 49 24.5 58.8 163 0.9 51 300 350	DS-5000-15M 1500 49 24.5 58.8 59 0.9 51 820 250	DS-6000-6H ☐600 61.7 37 92.5 385 1.0 51 160 800	DS-6000-8H ☐800 61.7 37 92.5 268 1.0 51 230 700	DS-6000-10M 1000 61.7 30.8 74 102 0.9 51 600 350	DS-6000-15M 1500 61.7 30.8 74 75 0.9 51 820 250
	System Schwing Nennkraft Beschl.N Geschw Ausl.Ma Masse A Maximale Frequenz Last Ma	gungstisch (mm) Sinus (kN) Rauschen (kN) Schock (kN) Maximum (m/s²) r (m/s) ximum (mms-s) Armatur (kg) Horizontal (Hz)	DS-3000-10M 1000 29.4 14.7 44.1 91 1.0 51 320 350 500	DS-3000-15M 1500 29.4 14.7 44.1 47 0.9 51 620 250 350	DS-5000-6H 600 49 29.4 73.5 350 1.0 51 140 800 1000	DS-5000-8H	DS-5000-10M 1000 49 24.5 58.8 163 0.9 51 300 350 500	DS-5000-15M 1500 49 24.5 58.8 59 0.9 51 820 250 350	DS-6000-6H ☐600 61.7 37 92.5 385 1.0 51 160 800 1000	DS-6000-8H ☐800 61.7 37 92.5 268 1.0 51 230 700 800	DS-6000-10M 1000 61.7 30.8 74 102 0.9 51 600 350 500	DS-6000-15M 1500 61.7 30.8 74 75 0.9 51 820 250 350

*In Abhängigkeit vom Referenzspektrum oder anderen Betriebsbedingungen (z.B. dynamische Eigenschaften Prüfling) kann das Ist-Spektrum vom Referenz-Spektrum abweichen. Bitte kontaktieren Sie uns für weitere Informationen.

Baureihe TS

3-Achs-Simulations Systeme

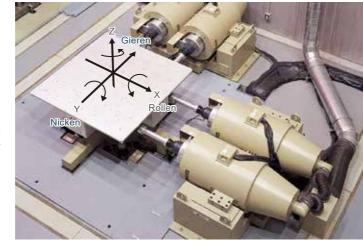
■ Spezifikationen

			TS-1000-4H	TS-1000-6H	TS-1000-8H		TS-2000-5H	TS-2000-8M			TS-3000-5H	TS-3000-8M
	Schwingungstisch (mm)		400	□600	□800	□1000	□500	□800	□1000	□1500	□500	□800
		Sinus (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Nennkraft	Rauschen (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
		Schock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Beschl.I	Maximum (m/s²)	98	65	42	33	163	98	65	30	196	113
	Geschw (m/s)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Systemdaten	Ausl.Maximum (mms-s)		51	51	51	51	51	51	51	51	51	51
	Masse A	Armatur (kg)	100	150	230	290	120	200	300	640	150	260
		Horizontal (Hz)	1000	800	700	350	800	500	350	250	800	500
	Frequenz	Vertikal (Hz)	1000	1000	700	500	800	800	500	350	800	800
	Last Ma	ximum (kg)	100	100	200	200	200	300	500	500	200	300
	Leistungsbedarf (kVA)		41	41	41	41	94	94	94	94	110	110
	Wasserb	oedarf primär (L/min)	-	-	-	-	-	-	-	-	-	-
	Syster	mtvp	TS-3000-10M	TS-3000-15M	TS-5000-6H	TS-5000-8H	TS-5000-10M	TS-5000-15M	TS-6000-6H	TS-6000-8H	TS-6000-10M	TS-6000-15M
		gungstisch (mm)	□1000	□1500	□600	□800	□1000	□1500	□600	□800	□1000	□1500
		a			10		40			04.7		

		mtyp	TS-3000-10M	1S-3000-15M	1S-5000-6H	1S-5000-8H	1S-5000-10M	1S-5000-15M	1S-6000-6H	1S-6000-8H	1S-6000-10M	1S-6000-15M
	Schwing	gungstisch (mm)	□1000	□1500	□600	□800	□1000	□1500	□600	□800	□1000	□1500
		Sinus (kN)	29.4	29.4	49	49	49	49	61.7	61.7	61.7	61.7
	Nennkraft	Rauschen (kN)	14.7	14.7	29.4	29.4	24.5	24.5	37	37	30.8	30.8
		Schock (kN)	44.1	44.1	73.5	73.5	58.8	58.8	92.5	92.5	74	74
	Beschl.!	Maximum (m/s2)	73	43	306	222	158	67	342	257	199	84
	Geschw (m/s)		1.0	0.9	1.0	1.0	0.9	0.9	1.0	1.0	0.9	0.9
Systemdaten	Ausl.Maximum (mms-s)		51	51	51	51	51	51	51	51	51	51
	Masse A	Armatur (kg)	400	680	160	220	310	730	180	240	310	730
		Horizontal (Hz)	350	250	800	700	350	250	800	700	350	250
	Frequenz	Vertikal (Hz)	500	350	1000	800	500	350	1000	800	500	350
	Last Ma	ximum (kg)	500	500	300	300	500	700	300	300	500	700
	Leistung	gsbedarf (kVA)	110	110	149	149	153	153	182	182	182	186
	Wasserb	oedarf primär (L/min)	-	-	550	550	530	530	650	650	640	640

Baureihe TTS

Schwingprüfanlage mit 6 Freiheitsgraden



Schwingprüfanlage mit 6 Freiheitsgraden

Mindestens sechs Shaker werden im dreidimensionalen Raum platziert. Das System kann Bewegungen in sechs Freiheitsgraden erzeugen (drei translatorische und drei rotatorische).

Zusätzlich zu den Bewegungen in den X-, Y-, Z-Achsen, ist eine Drehbewegung (Rollen, Nicken, Gieren) unter Verwendung von Lagern möglich. Unter Verwendung von elektrodynamischen Shakern können IMV-Systeme Signale in einem großen Frequenzbereich und mit hoher Genauigkeit reproduzieren. Die Wartung des Systems ist einfach. Die Schwingprüfsysteme bestehen aus mindestens sechs Schwingerregern, die orthogonal zueinander angeordnet sind und auch die Roll-, Nick- und Gierbewegungen erzeugen. Das Kugellager wird verwendet, um die Drehbewegungen zu ermöglichen. Durch Verwendung von elektrodynamischen Schwingerregern kann das System über einen großen Frequenzbereich mit hoher Genauigkeit betrieben werden.

Die Wartung des Systems ist unkompliziert.

■ Fahrkomfort-Bewertung

Werden 2-Achs-Simultansysteme um die Drehfunktion erweitert, können Anregungen in 6 Freiheitsgraden durchgeführt werden. Damit kann der Fahrkomfort von Autositzen getestet werden.

Anregungsrichtung	X-achse	Y-achse	Z-achse			
Anregungskraft (kN)	3.9	7.8	16			
Auslenkung maximum (mms-s)	150	100				
Frequenzbereich (Hz)	1 - 100					
Tischabmessung (mm)	1800×1800					
Schwingerreger	1	2	4			

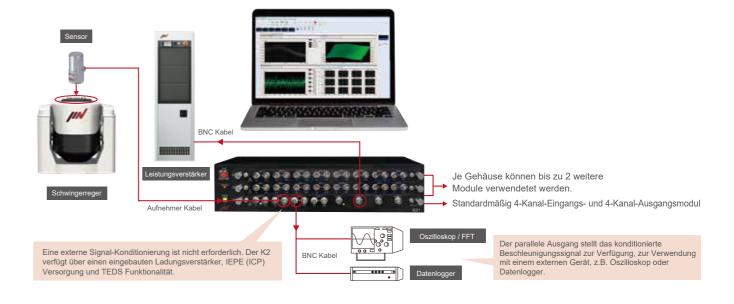
■ Großanlage zur Schwingungssimulation, 6 Freiheitsgrade

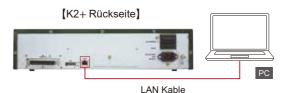
Insgesamt 10 Schwingerreger (6 vertikal, 4 horizontal) und ein Tisch von 4000x3500mm Größe ermöglichen Schwingungsprüfungen mit 6 Freiheitsgraden. Diese vielseitig einsetzbare Plattform eignet sich ideal für Prüfungen von großen Objekten, z. B. Teilen von Eisenbahnwaggons.

Anregungsrichtung	X-achse	Y-achse	Z-achse
Anregungskraft (kN)	80	48	96
Auslenkung maximum (mms-s)	51		
Frequenzbereich (Hz)	2 - 150		
Tischabmessung (mm)	4000×3500		
Schwingerreger	2	2	6

■ Simultanes 6-DOF Squeak und Rattle Testsystem, um Autositze zu prüfen

Luftgekühltes Schwingprüfsystem zur Prüfung von Quietsch- und Klappergeräuschen von Instrumenten oder anderen Autoinnenteilen.


Anregungsrichtung	X-achse	Z-achse		
Anregungskraft (N)	3200			
Auslenkung maximum (mms-s)	30			
Frequenzbereich (Hz)	5 - 100			
Tischabmessung (mm)	1500×3500			
Schwingerreger	2	2	4	


(Pro System)

Schwingungsregler

Systemaufbau

Hardware

	Gehäuse
Anzahl Steckplätze	3
Versorgungsspannung	100 V-240 V AC, 1-ph. (autom. Auswahl)
Externe Kommunikation	E/A-Buchse (für Not-Halt)
Umgebungsbedingungen	0-40°C, <85% rel. LF, nichtkondensierend
Abmessungen	W430 × H100 × D383 mm (Ohne Anschlüsse etc.)
Gewicht	ca. 7.0 kg

Minimale Spezifikation des PCs

- Ein LAN-Port Gigabyte-Ethernet-Port und Gigabyte-Ethernet-Kabel
 Microsoft Windows 10 Pro (64 Bit) oder Windows 10 IoT Enterprise (64 Bit) *.
- Speicher erforderlich (für 8 Eingangskanäle)
- DVD-ROM-Laufwerk (für die Installation erforderlich • Ein USB-Anschluss (für Lizenz-Dongle erforderlich)
- Die Auflösung von Monitor und PC erfordert 1280 x 1024 oder mehr
- * Für die Software des Schwingungsreglers K2/K2-Sprint ist eine japanische Export-Lizenz erforderlich (E/L).

			anal-Eingang u. sgangsmodul (standard)	8-Kanal-Eingangsmodul (option)			
	Anzahl KanäleInput		4	8			
	Anschluss, Eingang			BNC			
	Eingangssignal	Ladung, Spannung, IEPE					
	Empfindl. Ladungsverst.			or 10 mV/pC			
	Ladungsverstr.Cut-off			2 Hz			
	Eingang maimum	Ladungseing.	±10000 pC or ±1000 pC				
<u>e</u>		Spannungseing.	±10000 mV				
gst		IEPE Eingang	±10000 mV				
Eingangsteil	Abtastfrequenz		102.4 kHz	maximum			
g	Kopplung		AC o	r DC			
i	AC-Kopplung Cut-off	0.1 Hz					
	CCLD Verstärker (IEPE)		+24 VDC	c, 3.5 mA			
	TEDS Verstärker (IEPE)		Version 0.9,	Version 1.0			
	A/D-Wandler	Verfahren $\Delta\Sigma$					
		Auflösung	- v				
		Dynam. Bereich					
		Digitalfilter	Welligkeit im Durchlassbereich: +0.001, -0.06 dB, Sperrbanddämpfung:				
	Anzahl Kanäle	4 (1 Kanal als Ar	ntriebsausgang belegt)				
	Anschluss, Ausgang	BNC					
<u>=</u>	Ausgangssignal	Spannung					
)St	Maximum Ausgangsspannung	±10000 mV					
Ę,	Abtastfrequenz	102.4 kHz ma	iximum				
Ausgangsteil	D/A-Wandler	Verfahren	ΔΣ				
Sn		Auflösung	32 bit				
\triangleleft		Dynam. Bereich	120 dB				
		Digitalfilter	Welligkeit im Durchlassbereich: ±0.005 dB Sperrbanddämpfung: 100 dB				

[Schwingungsregler] K2+ [Schwingungsregler] K2+

Intuitive Bedienung

Leicht verständliche Symbole

Test Spezifikation

ausgewählt wurde.

*Standard für die A-Serie / K-Serie

Definieren eines Testablauf-Plans

Option Test-Standards

Die in der Launcher-Software (ab Version 22.2.0.0) gespeicherten Test Standards ab Dezember 2022. sind nachfolgende aufgeführt. Die Launcher-Software ist eine Option von K2.

* Bitte beachten Sie das Folgende für den Teststandard

Die Testdatei wird anhand der Versuchsparameter automatisch generiert, sobald die gewünschte Spezifikation

JIS C 60068	Sinus, Rauschen, Schock
JIS D 1601	Vibration testing methods for automobile parts
JIS E 4031	Rolling stock equipment - Shock and vibration tests
JIS Z 0200	Packaging - Complete, Filled Transport Packages
JIS Z 0232	Packaged freights - Method of vibration test
JASO D 014	Automotive parts - Environmental conditions and testing for electrical and electronic equipment
ASTM D4169-09, -14, -16	Standard Praxis für die Leistungsprüfung von Versandbehältern und Systemen
UN	Lithium-lonen-Batterie Tests, nach Vorschlag von UN 38.3
ISO16750	Straßenfahrzeuge - Umgebungsbedingungen und Prüfungen für elektrische und elektronische Ausrüstungen
ISO12405	Elektrisch angetriebene Straßenfahrzeuge - Prüfspezifikation für Lithium-Ionen Batteriepakete und -systeme
IEC60068	Sinus, Rauschen, Schock
IEC62660	Sekundärbatterien für den Antrieb von Elektrostraßenfahrzeugen Zuverlässigkeits- und Missbrauchsprüfung von Lithium-Ionen-Zellen
ISTA 3A, 2A	Verpackungsprüfungen
IEC61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken
ISO13355	Verpackung - Versandfertige Packstücke und Ladeeinheiten - Schwingprüfung mit vertikaler rauschförmiger Anregung
ISO4180	Verpackung - Versandfertige Packstücke
ISO19453	Straßenfahrzeuge - Umgebungsbedingungen und Tests für elektrische und elektronische Einrichtungen von Antriebssystemen für Elektrofahrzeuge
JIS E 3014	Teile für Eisenbahnsignale
EIA 364	Prüfung der Leistungsfähigkeit elektrischer Steckverbinder

*Für Erweiterungen und Aktualisierungen fallen Zusatzkosten an.

■ Option

LAUNCHER

Wählen Sie einfach den Standard, um die wichtigsten Testanforderungen zu übernehmen. Drücken Sie "Start", um die Testkonfiguration zu erzeugen.

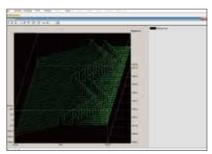
SYSTEM MONITOR

Die Prüfung und der Verstärker können mit einem Standard-Browser über den PC überwacht werden. Probleme oder Fehler sind leicht zu erkennen.

Die Funktion "Schnelle Hilfe" unterstützt Sie.


Startseite

Startseite (Fehler)



K2 DataViewer Lizenzfrei


Mit dieser Software können die gespeicherten Daten von beispielsweise SINUS, RAUSCHEN und SCHOCK Versuchen ausgewertet werden. Es lassen sich z.B. Versuchsdaten anzeigen, Daten vergleichen und Berichte erstellen.

Zustandsinformationen und Ergebnis-Diagramm

3D Darstellung

Überlagerung von Daten

Bericht

■ System Anforderungen

[Unterstützte Betriebs-Systeme]

Windows 10 (64bit), Windows 7 (32/64bit)

[Speicher]

RAM größer als 512 MB empfohlen

[Festplatte]

Freier Speicher von mehr als 200 MB erforderlich

Produkt Seite

[Schwingungsregler] K2+ [Schwingungsregler] K2+

■ Software

 Regelalgorithmus • R DWELL: Resonanzverweilen SINUS Eine Resonanz wird anhand des Kontinuierliche Regelung des Effektivwertes Phasenunterschiedes zwischen dem 2999 PX F # ... Regelfrequenzbereich Regelpunkt und einem Antwortsignal am Prüfteil 0.1 - 20000 Hz ermittelt. Das System kann auf der ermittelten · dynamischer Regelbereich Resonanzfrequenz eine vordefinierte Zeitdauer > 120 dB verweilen. Bei einer prüfteilbedingten Betriebsart Verschiebung der Resonanzfrequenz, kann 1. Kontinuierlicher Sweep, Spot, Manuell diese automatisch nachgeführt werden. Nach einer vordefinierten Zeitdauer kann der 2. Closed-loop, Open-loop Sinus-Sweep fortgesetzt werden, bis die Berechnung nächste Resonanzfrequenz gefunden wird. Mittel, Effektivwert, Tracking A_DWELL: Amplitudenverweilen Mehrkanal-Reglermodi Durch die Messung einer Regelmittelwert, Maximum Regelung, Minimum Regelung Übertragungsfunktion des Prüfteils an zwei Eingangskanäle Punkten werden Resonanzen aufgezeichnet. Maximum 20 Anschließend können einzelne Resonanzen anhand verschiedener Kriterien zum Verweilen unterliegt Einfluss durch andere Faktoren ausgewählt werden. Die Resonanzen können bei Verschiebungen anhand von Amplitude oder Phase nachgeführt werden. LIMIT CONTROL Messkanäle des Reglers können als Limit-Kanäle definiert werden. Sobald der Messwert eines Limit-Kanals einen vorher definierten Wert überschreitet, wird der Anregungspegel entsprechend reduziert. Multi Sweep Sine Ein einfacher Sinus-Sweep kann in mehrere Frequenz-Intervalle aufgeteilt werden. Die einzelnen Intervalle können dann parallel zueinander ablaufen, wodurch die Testdauer signifikant reduziert wird. Regelalgorithmus SOR: Sinus auf Rauschen RANDOM PSD geschossener Regelkreis, Spektraldichte Kombination von sinus- und rauschförmiger Anregung. DESCRIPTION OF THE PROPERTY OF Die sinusförmige Anregung kann gesweept werden. für jedes Frequenzsegment ROR: Rauschen auf Rauschen Regelfrequenzbereich 0000 Kombination eines Breitbandrauschens mit 20 kHz maximum Schmalbandrauschen, welches gesweept werden kann. Anzahl Frequenzlinien Erweitertes ROR Maximum 20000 Linien Schmalbänder für ROR können ieweils dynamischer Regelbereich individuell festaeleat werden. PSD LIMIT: PSD-Grenzwertregelung > 98 dB Messkanäle des Reglers können als Limit-Kanäle · Zeit der Regelschleife definiert werden. Sobald der PSD-Wert eines 200 ms (fmax = 2000 Hz, bei L = 400 Linien) Limit-Kanals einen vorher definierten Wert Mehrkanal-Reglermodi überschreitet, wird der Anregungspegel im Regelmittelwert, Maximum Regelung, Minimum Regelung definierten Frequenzbereich entsprechend reduziert. · Eingangskanäle Non-Gaussian Maximum 20 Eine Methode zum Nachbilden nicht normalverteilter Schwingungen, wie beim *unterliegt Einfluss durch andere Faktoren Transport mit hohen Spitzenwerten. Soft-Clipping Dies ist eine Bearenzungsfunktion, die den Spitzenwert der Ausgangsspannung verringern kann, ohne die Regelungsleistung zu beeinträchtigen. Regelalgorithmus LONG WAVEFORM SCHOCK Signale geregelt durch Feed-Forward-Verfahren Die max. Länge eines Referenzsignals ist auf 16 Reaelfreauenzbereich k Datenpunkte begrenzt. Mit der Option LONG Maximum 20000 Hz WAVEFORM kann die max. Signallänge auf 200 k Datenpunkte erweitert werden. Bei einer · Anzahl Frequenzlinien Abtastfrequenz von 512 Hz ergibt dies Maximum 25600 Linien beispielsweise eine Signaldauer von etwa 6,5 · dynamischer Regelbereich Minuten im Vergleich zu einer Signaldauer von > 98 dB ca. 30 Sekunden bei 16k Datenpunkten. · Art des Referenzsignals MEGAPOINT Classical shock waveform Eine weitere Vergrößerung der max. Datenlänge (Traditionelle Schockform (Halbsinus, Haversine, Sägezahn

Dreieck, Trapez etc.), SINUS-Beat Signal, Gemessenes

*unterliegt Einfluss durch andere Faktoren

Signal etc.

Eingangskanäle

Maximum 20

kann über die Option MEGAPOINT erreicht

werden. Die max. Anzahl der Datenpunkte wird

auf 5000 k erhöht. Bei einer Abtastrate von 512

Hz ergibt dies beispielsweise eine Signaldauer

von ca. 163 Minuten. (Option MEGAPOINT benötigt Option LONG WAVEFORM)

Mit der Software Option SRS (Schock-Antwort Spektrum) werden die Prüfbedingungen nicht über eine Signalform wie sonst üblich definiert, sondern können anhand einer SRS Analyse festgelegt werden. Außerdem kann bei einem Standard Schock-Test eine SRS Analyse des Antwort-Signals durchgeführt werden.

SRS: Schock-Antwort-Spektrum

· Regelalgorithmus (drei Modi der Regelung) LIMIT CONTROL Multi-SINUS 1. Amplitude: Kontinuierliche Regelung des Effektivwertes Messkanäle des Reglers können als 2. Phase: Echtzeit-Signalregelung- Vorwärtskopplung Limit-Kanäle definiert werden. Sobald COMMENDED FOR THE PERSON NAMED IN 3. Überwachung und Minimierung der Querachsenkomponenten der Messwert eines Limit-Kanals einen Regelfrequenzbereich vorher definierten Wert überschreitet, عصموم 0.1 - 10000 Hz wird der Anregungspegel entsprechend Frequenzauflösung reduziert. < 10⁻⁴ of Frequenz · SRS: Schock-Antwort-Spektrum dynamischer Regelbereich Mit der Software Option SRS > 120 dB (Schock-Antwort Spektrum) werden die Betriebsart Prüfbedingungen nicht über eine 1. Kontin. Sweep. Spot-Test Signalform wie sonst üblich definiert, 2. Steuerung und Überwachung in verschiedenen physikalischen Einheiter sondern können anhand einer SRS Abschätzung Spitzenwert Analyse festgelegt werden. Außerdem Durchschnitt, RMS, Tracking kann bei einem Standard Schock-Test Mehrkanal-Reglermodi eine SRS Analyse des Antwort-Signals Regelmittelwert, Maximum Regelung, Minimum Regelung durchaeführt werden. Eingangskanäle Maximum 20 (Maximal 20 Kanäle für den Hauptsteuerkanal) Ausgangssignal Maximum 12 *unterliegt Einfluss durch andere Faktoren PSD LIMIT CONTROL Regelalgorithmus (drei Modi der Regelung) Multi-RANDOM 1. PSD geschossener Regelkreis, Spektraldichte für jedes Messkanäle des Reglers können als Limit-Kanäle definiert werden. Sobald Frequenzsegment 3999- FX-H 2. Echtzeitsignal von Feed-Forward Verfahren geregelt der PSD-Wert eines Limit-Kanals einen CONTRACTOR OFFI 3. Überwachung und Minimierung der Querachsenkomponenten vorher definierten Wert überschreitet Regelfreguenzbereich wird der Anregungspegel entsprechend Maximum 10000 Hz reduziert. Anzahl Frequenzlinien Non-Gaussian Maximum 3200 Linien Eine Methode zum Nachbilden nicht dynamischer Regelbereich normalverteilter Schwingungen, wie > 98 dB beim Transport mit hohen · Zeit der Regelschleife Spitzenwerten. 450 ms (3-Eingangs/3-Ausgangsregelung, 120 Freiheitsgrade, fmax=2000 Hz, L = 200 Leitungen, Mittelung Übersprechdaten = 8 x/Schleife) Mehrkanal-Reglermodi Regelmittelwert, Maximum Regelung, Minimum Regelung Eingangskanäle Maximum 20 (Maximal 20 Kanäle für den Hauptsteuerkanal) Ausgangssignal *unterliegt Einfluss durch andere Faktoren Regelalgorithmus · SRS: Schock-Antwort-Spektrum Multi-SCHOCK Signale geregelt durch Feed-Forward-Verfahren Mit der Software Option SRS Regelfreguenzbereich (Schock-Antwort Spektrum) werden die Maximum 20000 Hz Prüfbedingungen nicht über eine Anzahl Frequenzlinien Signalform wie sonst üblich definiert, Maximum 25600 lines sondern können anhand einer SRS dynamischer Regelbereich Analyse festgelegt werden. Außerdem > 98 dB kann bei einem Standard Schock-Test Art des Referenzsignals eine SRS Analyse des Antwort-Signals (Traditionelle Schockform (Halbsinus, Haversine, Sägezahn, Dreieck, durchgeführt werden. Trapez etc.), SINUS-Beat waveform, Measured waveform etc. Länge des Referenzsignals Maximum 5000 k Punkte Eingangskanäle Maximum 32 Ausgangssignal Maximum 32 *unterliegt Einfluss durch andere Faktoren

Optionale Software	Übersicht				
CAPTURE : Programm für analoge Signale	Erfassung des analogen Signals, Speicherung des Signals in Form von Signaldaten zur Verwendung durch SCHOCK, BMAC-Signalregelung oder PSD-Regelung rauschförmiger Schwingungen.	Abtastfrequenz Datenlänge Eingangskanäle Signalbearbeitung/Analysefunktion	51.2 kHz maximum Maximum 5000 k Datenpunkte Maximum 24 Filterung, Frequenzübertragungsverarbeitung, PSD Erstellung, Übertragsfunktion zwischen den Kanäle		
SCHEDULER : Test-Scheduler					
TCP Communication Server					

Automotivkomponenten

Mit Hilfe elektrodynamischer Schwingerreger als Aktoren wird eine genaue Wiederholbarkeit der Signale in einem breiten Frequenzbereich bis 500 Hz möglich.

Drehschwingungstestsystem

Wenn Kompaktshaker mit einem Multi-Achsen-Testsystem kombiniert werden und beide Systeme gleichzeitig betrieben werden, lassen sich ein reales Straßenprofil mit 6-DOF und Torsion erzeugen

3-Achs-Simulations Systeme

Testsysteme für die Reifenindustrie werden für die Bewertung der Charakteristik eines Reifens bei veränderten Luftmengen und Fahrbedingungen eingesetzt.

Schwingprüfsystem für niedrige Querbewegungen

Ermöglicht eine niedrige Querbewegung, der Schwerpunkt des Prüfaufbaus wird zur Anregungsachse ausgerichtet.

Automotivkomponenten

Schwingprüfsystem mit 6-DOF

Zum Bewerten der von der Straßenoberfläche erzeugten Geräusche, werden die Vibrationen mit 6 Freiheitsgraden (bis 200 Hz) reproduziert. Geräuscharm durch natürliche Luftkühlung.

Vibrationssystem mit 200 mm peak-to-peak Auslenkung

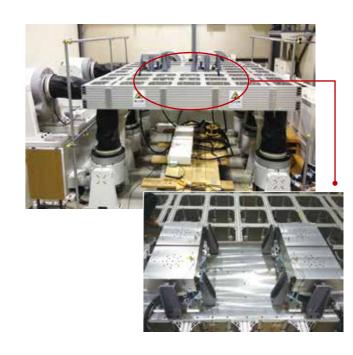
Das System ist besonders für Anwendungen mit einer hohen Geschwindigkeit bei niedrigen Frequenzen geeignet. Das System kann durch die vier Linearführungen große Drehmomente aufnehmen. So

Großes Schwingprüfsystem mit 6 Freiheitsgraden

Extrem genaue Nachbildung von Vibrationen für Untersuchungen des Sitzkomforts mit einem 6-DOF Shaker.

6-DOF Quietsch u. Knartsch Testsystem für Intrumententafeln

6-DOF Schwingprüfsystem mit 8 kompakten, leisen Shakern für die akustische Bewertung von Instrumententafeln.


Testsystem für diagonale Anregung

Diagonale Anregung für Zweiräder. Drehwinkel für den Schwingerreger kann in 1 Grad Schritten eingestellt werden.

Prüfsystem für kombinierte Bedingungen

Das Prüfsystem kombiniert Vibrationen, Temperatur, Durchfluss von Benzin und Öl und einen rotierenden Antrieb.

Torsion Testsystem (6 DOF + Torsion Schwingprüfsystem)

Versuche mit 6 Freiheitsgraden mit gemessenen Beschleunigungs-Zeitdaten sowie eine Torsionsbelastung der Autokarosserie sind während der Prüfung möglich.

Abgastestsystem

Dauerprüfung mit Heißgas und Vibration. Ein Abgassystem wird mit Heißgas von 200 bis 900 Grad Celsius und einem Luftstrom

von 2 bis 10 m³/min aus einem Heißgaserzeuger versorgt. können Prüflinge mit sehr ungleich verteilter Masse geprüft werden.

Automotivkomponenten

Dynamische Federkonstante

Hochgenaue Tests und Analysen in einem großen Frequenzbereich von 1 Hz bis 2000 Hz sind möglich.

Geräuscharmes 3-Achsen-Schwingprüfsystem

Die Anregung kann mit gemessenen Daten ode einer rauschförmigen Anregung simultan in 3 Achsen erfolgen. Wird der Shaker in einem Halbfreifeldraum betrieben, können Störgeräuschprüfungen mit einem Ruhegeräuschpegel kleiner als 30 dB durchgeführt werden.

Geräuscharmes 3-Achsen-Schwingprüfsystem + Führungsschiene

Das Schwingprüfsystem kann entlang der Führungsschiene verfahren werden. Das System kann bei Bedarf mit anderem Testequipment kombiniert werden, z.B. mit einer Klimakammer.

Schwingprüfsystem mit Kammer für vertikalen / horizontalen Betrieb

Anwendung bei Lebensdauerprüfungen On-Board-Batterieladegeräte, Wechselrichter, Gleichspannungswandler für Elektroautos. Die vertikale und horizontale Anregung mit einer Kammer ist möglich.

Kombiniertes 2-Achsen Schwingprüfsystem mit Kammer

Der Prüfraum ist von 2 Seiten aus zugänglich und ausgestattet mit einer Temperatur-Überwachung und einer CO2 Löschvorrichtung. Sinus bis 1000 Hz, Rauschen bis 2000 Hz.

Kammer für sehr hohe Temperaturen (900 °C) kombiniert mit Schwingprüfsystem

Zur Anwendung für die Prüfung unter Temperatur und Feuchte, bei der Produkte sehr hohen Temperaturen bis 900 °C ausgesetzt sind. Verwendet einen virtuellen Regelpunkt für die Regelung der Beschleunigung.

3-Achs-Schwingprüfsystem

Gleichzeitige Anregung in 3 Achsen. Ausgelegt für die Prüfung von Erdbebensicherheit und die Nachbildung von Erdbeben. Die Anregung erfolgt gleichzeitig in 3 Richtungen.

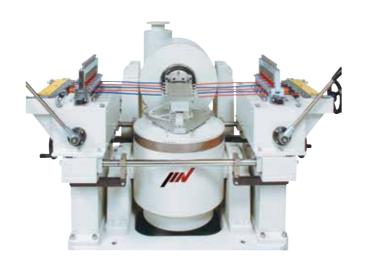
Kompakte Kammer kombiniert mit Schwingprüfsystem

Lebensdauer- und Funktionstest für Produkte, die einem plötzlichen Temperaturwechsel ausgesetzt sind.

Elektrokomponenten

Schwingprüfsystem zur Aufnehmer-Kalibrierung

Reine 1-Achs-Anregung, die mit herkömmlichen 1-Achssystemen nur schwierig zu realisieren war, wird durch Anordnung der Schwingerreger um den Schwingungstisch möglich.


Hochfrequenz-Schwingprüfsystem

Bei der Kombination von vier geräuscharmen, kompakten Schwingprüfsystemen mit einer Kammer ist eine Mehrkanalregelung mit Frequenzen von 2 kHz bis 10 kHz möglich.

Prüfkammer für kombinierte Bedingungen

Um den Prüfling während der kombinierten Prüfung überwachen zu können, wird großflächig wärmebeständiges Glas eingesetzt (-40 Grad Celsius bis 110 Grad Celsius). Anstelle der Kammer ist das Schwingprüfsystem mit Führungsschienen ausgestattet, um Platz zu sparen.

System zur Bewertung von Crimp-Verbindungen

Verkürzte Zeit zum Einrichten für Crimp-Verbinder unterschiedlicher Größe. 8 bis 20 Proben können gleichzeitig untersucht

Kundenspezifische Produkte

Transportversuche

6-DOF Schwingungsprüfsystem, hängende Prüflingsmontage (Bahnanwendung)

Die Kombination von 10 Schwingerregern (6 vertikal, 4 horizontal) und Tischen von 4.000 x 3.500 mm ermöglicht gleichzeitige Mehrpunktschwingungsprüfungen. Diese vielseitige Schwingungsplattform eignet sich ideal für die Prüfung großer Komponenten, z. B. Eisenbahnwaggonteilen und Brennstoffbatterien.

Großes 3-achsiges Schwingprüfsystem für Transportsimulation

Shaker für besonders große Prüflinge. Gleittisch-Größe (3.000 x 2.000) mm, bestehend aus zwei 125 kN Shaker für die X- und Y-Achsen und zwei 60 kN Shaker für die Z-Achse.

3-Achs-Simulationssysteme

Die Messdaten werden durch das im Waggon montierte Datenerfassungssystem von IMV aufgezeichnet. Diese Daten werden später auf dem 3-achsige Shaker simultan wiedergege-

Großes 2-achsiges Schwingprüfsystem


Tischgröße (2000 x 2500) mm, maximale Last 2000 kg. Transportversuche für große Prüflinge oder Lebensdauer-Ver-

Baumaschinenversuche

Energiesparendes Schwingprüfsystem mit großem Gleittisch

Das maximale Ladegewicht beträgt 2,000 kg. Vorausgesetzt es wird die vertikale Führung bei Anregung in der vertikalen Achse verwendet. Die eingebaute ECO-Funktion optimiert die Energieaufnahme bei allen Tests.

Schwingprüfsystem mit 6 Freiheitsgraden

Dauertests mit gemessenen Signalen für Baggerkabinen oder schwere Maschinentanks. Das Testsystem reproduziert Schwingungen in der X-, Y- und Z-Achse ebenso wie Rollen, Nicken, Gieren.

3-Achsen-Wechsel System

Einmal vorbereiten von Prüfling und Vorrichtung - und es ist möglich die Anregung in die X-, Y- und Z-Achse automatisch zu wechseln. Das spart Zeit, denn das Umbauen des Prüflings ist nicht erforderlich und Versuche können ohne Zeitverlust durchgeführt werden.

Großes Schwingprüfsystem für hohe Frequenzen (bis 5000 Hz)

Versuche mit hohen Frequenzen und großen Prüflingen. Der Gleittisch kann entsprechend der Prüflingsgröße ausgetauscht werden, jeder Tisch kann für hohe Frequenzen verwendet werden.

Kundenspezifische Produkte

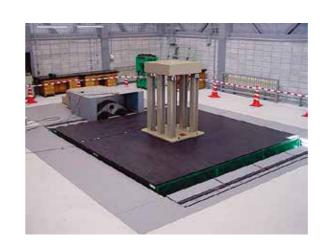
Erdbebensicherheit

Schwingungsprüfsysteme zur Erdbebensicherheit

Mit der einzigartigen Hybrid-Methode werden sowohl die große Auslenkung als auch die hohen Frequenzen der Referenz-Signale genau abgebildet, denn die Vorteile eines Servomotors und Shakers werden kombiniert

Schwingungsprüfsysteme zur Erdbebensicherheit

Die erste Hybrid-Technologie in der Industrie, mit der tief- und hochfrequente Anteile eines Signals unter Verwendung eines Servoantriebs und eines elektrodynamischen Shakers genau wiedergegeben werden können.



Vibrationsprüfsystem für seismische Untersuchungen an Schaltern

Hydrauliklager (Typ TT) ermöglichen ein Fehlerverhältnis bei der Signalwiedergabe von < 2 % bei nur ca. 3

Maximaler Hub: 150 mm pk-pk Frequenzbereich: 0.5 Hz bis20 Hz

Große 2-Achs-Simultan- Schwingprüfanlage mit gleichzeitiger Mehrpunktanregung

Große Schwingprüfanlage mit Tischgröße 4,500 mm x 4,500 mm, Nennverfahrweg horizontal: 400 mm pk-pk, Nennverfahrweg vertikal:200 mmpk-pk, Nennnutzlast: 20,000 kg

Luft-und Raumfahrt

350 kN Schwingprüfsystem, wassergekühlt

Eines der Systems mit weltweit größter Anregungskraft und einer Auslenkung von 76.2 mm pk-pk. Schockprüfungen mit hoher Geschwindigkeit (3.5 m/s) sind ebenfalls möglich.

Große 200 kN Testsysteme für die Luftfahrtindustrie

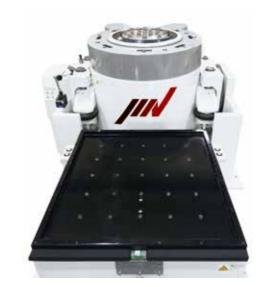
Das Schwingprüfsystem erlaubt hohe Quer- und Kippmomente bei gleichzeitig geringer Querbeschleunigung für vertikale und horizontale Versuche.

Schwingprüfsysteme für Reinräume

Lufteinlass und Luftauslass für den Shaker werden aus dem Raum geleitet, um die Luftqualität im Raum nicht zu beeinträchtigen.

Multi-Shaker, Multi-Achsen Schwingprüfsystem

Multi-Shaker Schwingprüfsystem mit simultaner Anregung in drei Achsen. Mit dem System können Versuche an sehr langen Bauteilen in einem großen Frequenzbereich durchgeführt werden.


Kundenspezifische Produkte

Andere Anwendungen

Schwingprüfsystem für die Ermüdungsprüfung von Kupferplatten

Für diese Anwendung wurde ein IMV Shaker der m-Serie angepasst. Damit wird die gleichzeitige Versuchsdurchführung an 12 Kupferplatten möglich.

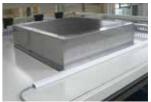
Testsystem mit säurebeständigem Tisch

Ein Standard-Aluminium-Gleittisch ist für Batterieprüfungen nicht geeignet, da er durch Austreten der Batterie-Chemikalien beschädigt werden kann.

Kompaktes Schwingprüfsystem zur Sensor Kalibrierung

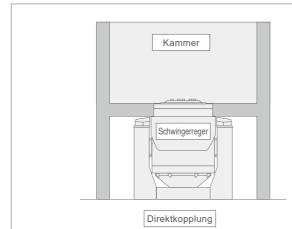
Das System erzielt eine geringe Verzerrung bei niedriger Frequenz und niedriger Beschleunigung und wird als Schwingerreger für die Kalibrierung in JQA-Einrichtungen und öffentlichen Einrichtungen verwendet.

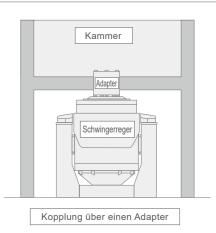
Druckfeste, flexible Anbindung


Die Mittenposition des Gleittisches kann eingestellt werden, und die Auslenkung wird ebenfalls überwacht.

Empfohlener Einbau

Schwingprüfsysteme Umweltprüfkammer Produkte können sowohl thermischen als auch mechanischen Belastungen ausgesetzt sein. Das sollte nicht getrennt voneinander betrachtet werden, da die Auswirkungen in Verbindung stehen können. IMV bietet Schwingprüfsysteme in Kombination mit Klimakammern an und gewährleistet damit schen entsprechend entwickelt.


Kammer für vertikale Anregung



Gerätetyp: Syn-3HA-40-V

Innenmaße	W1000×D1000×H1100 mm
Temperaturbereich	-40 °C to +150 °C
Luftfeuchtigkeitsbereich	20 % to 95 %RH
Temperaturgradient / Kühlen	+20 °C => -40 °C In 60 minuten (keine Gerade)
Temperaturgradient / Heizen	-40 °C => +150 °C In 90 minuten (keine Gerade)

Gerätetyp: Syn-6HW-30-V

Innenmaße	W1800×D1900×H1500 mm
Temperaturbereich	-30 °C to +80 °C
Luftfeuchtigkeitsbereich	30 % to 95 %RH
Temperaturgradient / Kühlen	+45 °C => -30 °C In 35 minuten (keine Gerade)
Temperaturgradient / Heizen	-30 °C => +80 °C In 25 minuten (keine Gerade)

Kammer für vertikale und horizontale Anregung

Horizontaler Gleittisch in Kombination mit dem Schwingprüfsystem

Die Kombination aus Schienen und Höhenverstellung ermöglicht kombinierte Versuche in vertikaler und horizontaler Richtung.

■ Schienen- und Höhenverstellung

Gerätetyp: Syn-3HA-70-VH

Innenmaße	W1000×D1000×H1000 mm			
Temperaturbereich	-70 °C to +180 °C			
Luftfeuchtigkeitsbereich	20 % to 98 %RH			
Temperaturgradient / Kühlen	1 °C / minuten oder mehr (keine Gerade)			
Temperaturgradient / Heizen	2 °C / minuten oder mehr (keine Gerade)			

■ Option für die Kammern für vertikale und horizontale Anregung

Optionaler Kran

Ein Kran ermöglicht die sichere und einfache Handhabung der Prüflinge.

Optionaler Kran und Tür mit Sichtfenster

Der vertikale Kammerboden kann mit einem Kran montiert und demontiert werden, während der Head-Expander am Shaker montiert bleibt. Zusätzliche wird die Benutzerfreundlichkeit durch eine Tür mit Sichtfenster, automatische Regulierung der Shaker-Position etc. erhöht.

Seitenfenster

Durch die Fensterposition ist es möglich, den Shaker und die Kammer auch dann zu verbinden, wenn der Prüfling bereits montiert ist.

Energiekette

Die Versorgung mit Medien und elektrischen Leitungen erfolgt sicher mit der Energiekette.

[Umweltprüfkammer] Schwingprüfsysteme

[Umweltprüfkammer] Schwingprüfsysteme

Kammer für mehrachsige Anregung

Klimakammer für mehrachsiges Schwingungsprüfsystem.

Wenn der Prüfaufbau nicht für jede Anregungs-Achse neu konfiguriert werden muss, kann die Gesamtprüfdauer reduziert werden.

2-Achsen

Gerätetyp: Syn-4HA-40-M

Innenmaße	W1200×D1200×H1000 mm			
Temperaturbereich	-40 °C to +150 °C			
Luftfeuchtigkeitsbereich	20 % to 98 %RH			
Temperaturgradient / Kühlen	+20 °C => -40 °C In 80 minuten (Last: kombiniert + Aluminium 60 kg)			
Temperaturgradient / Heizen	-40 °C => +150 °C In 80 minuten (Last: kombiniert + Aluminium 60 kg)			

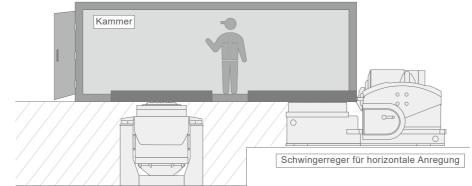
3-Achsen

Gerätetyp: Syn-3HA-40-M

Innenmaße	W1000×D1000×H1000 mm
Temperaturbereich	-70 °C to +180 °C
Luftfeuchtigkeitsbereich	20 % to 98 %RH
Temperaturgradient / Kühlen	+20 °C => -70 °C In 40 minuten (keine Gerade)
Temperaturgradient / Heizen	-70 °C => +180 °C In 40 minuten (keine Gerade)

Kammer für große Prüflinge

Große Prüflinge können in einer Kammer vertikal und horizontal geprüft werden.



Gerätetyp: Syn-6HA-40-VH

Innenmaße	W4000×D2000×H2500 mm
Temperaturbereich	-40 °C to +120 °C
Luftfeuchtigkeitsbereich	30 % to 95 %RH
Temperaturgradient / Kühlen	+20 °C => -40 °C In 120 minutes (Curve gradient)
Temperaturgradient / Heizen	-40 °C => +150 °C In 150 minutes (Curve gradient)

Schwingerreger für vertikale Anregung

Darstellung der kombinierten Systeme

für die Installation von Schwingprüfsystemen

Hauptgrößen für Schwingungsprüfungen

Für die Durchführung von Schwingungsprüfungen gelten vier wesentliche Größen: Kraft [N], Beschleunigung [m/s²], Geschwindigkeit [m/s] und Weg [mmS-S]. Beginnen wir mit der Kraft. Die Kraft "F", mit der ein Objekt mit der Masse "m" beschleunigt wird "A", ergibt sich aus

	Si-Einheit	Einheit
F : Kraft	[N]	[kgf]
m: Masse	[kg]	[kg]
A: Beschleunigung	j [m/s²]	[G]

Das heißt, wenn die Beschleunigung von 1 m/s² auf eine Masse von 1kg wirkt, beträgt die dazu erforderliche Kraft 1 N. Die Gravitationsbeschleunigung G beträgt 9,8 m/s².

Angenommen wir haben ein sich sinusförmig bewegendes Objekt. Der Weg beträgt demnach:

D = D0 sinωt

Die Geschwindigkeit erhält man durch Differenzierung des Weges mit

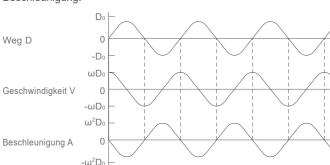
 $V = \frac{dD}{dt}$

V = ωD0 cosωt

Die Beschleunigung erhält man durch Differenzierung der Geschwindigkeit mit

 $A = \frac{dV}{dt}$

 $A = -\omega^2 D0 \sin \omega t$


Durch Einsetzen von

 $\omega = 2\pi ft$

erhalten wir Gleichungen mit Angabe der Amplitude:

$V = \omega D = 2\pi f D$	D:Weg	$[m^{0-p}]$
$A = \omega^2 D = (2\pi f)^2 D$	V:Geschwindigkeit	[m/s]
	A:Beschleunigung	$[m/s^2]$

Das folgende Diagramm zeigt Signale für Weg, Geschwindigkeit und Beschleunigung.

Durch Umstellung erhalten wir die folgenden Gleichungen:

$$f = \frac{A}{2\pi V}$$

$$A = \frac{V^2}{D}$$

$$V = 2\pi fD$$

$$D = \frac{A}{D}$$

Für das Gebiet der Schwingungsprüfung wird durch d [mmS-S] der Weg ausgedrückt.
In den obigen Gleichungen wird also

$$D = \frac{d}{2000}$$

eingesetzt

f = A	
2πV	f:Frequenz[Hz]
$A = \frac{(2\pi f)^2 d}{2000}$	A:Beschleunigung[m/s²]
$V = \frac{2\pi fd}{2000}$	V:Geschwindigkeit[m/s]
$d = \frac{2000A}{(2\pi f)^2}$	d:Weg[mms-s]

Beispiel

Beispiel II
$$A = 100[m/s^2], V = 0.5[m/s]$$

$$f = \frac{A}{2\pi V} = \frac{100}{2 \times \pi \times 0.5} = 31.8[Hz]$$

$$d = \frac{2000V^2}{A} = \frac{2000 \times 0.5^2}{100} = 5[mms-s]$$

Bitte beachten Sie auch die Umrechnungstabelle auf Seite 72.

■ Über [dB]

Die Einheit dB wird immer dann verwendet, wenn das Verhältnissen von physikalischen Einheiten beschrieben wird. Besonders, wenn Werte das Tausend- oder Millionenfache eines Referenzwerts darstellen, kommt die logarithmische Skala dB anstelle der linearen Skala zur Anwendung. Damit werden die Werte sinnvoller ausgedrückt und die dB Skala ist ein Standard in der Industrie. Wenn Werte wie beispielsweise die SINUS-Beschleunigung verglichen werden, wird dB wie folgt ausgedrückt:

a =
$$20 \log \frac{A_1}{A_0}$$
 [dB] A₁ = Vergleichswert A₀ = Bezugswert

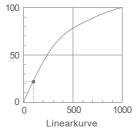
Das Millionenfache ergibt folgenden Ausdruck:

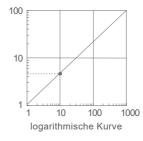
$$a = 20 \log \frac{1,000,000}{1} = 120[dB]$$

Damit wird nicht nur die Länge des Zahlenausdrucks verringert, es erleichtert auch die Durchführung der Rechenoperationen.

So ergeben z.B. 25 dB und 30 dB zusammen 55 dB. Stellt man die gleiche Rechnung linear an, ergibt das folgendes Bild:

25[dB] = 20 log A A =
$$10^{\frac{25}{20}}$$
 = 17.78
30[dB] = 20 log B B = $10^{\frac{30}{20}}$ = 31.62
A×B = 17.78×31.62 = 562.3 = 20 log 562.3 = 55[dB]


Anstelle der Multiplikation kann also unter Verwendung von dB die Addition angewendet werden. Nachstehend Umrechnungstabellen für dB und Vielfache davon:


*Beim Vergleich von Leistungen, z.B. RAUSCHEN PSD, a = 10log (A1 / A0) [dB].

dB	0	0.1	1	3	6	10	20	30	40	60
Vielf.	1	1.01	1.12	1.41	2.0	3.16	10	31.6	100	1000
-ID	_	0.4	4	0	0	40	00	00	40	00
dB	0	-0.1	-1	-3	-6	-10	-20	-30	-40	-60
Vielf.	1	0.99	0.891	0.709	0.501	0.316	0.1	0.0316	0.01	0.001

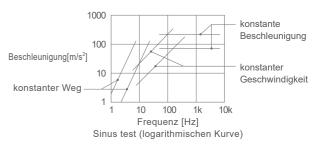
Arbeit mit der logarithmischen Kurve

Wenn Daten für Schwingungsprüfungen oder andere physikalische Erscheinungen aufgetragen werden sollen, arbeiten wir häufig mit der logarithmischen Kurve.

Bei der Linearkurve erhalten wir Y = 20 für X = 100. Dagegen lässt sich der Wert für Y bei X = 10 oder 1 nicht mehr genau ablesen. Bei der logarithmischen Kurve hingegen lässt sich der Wert für Y bei X = 10 oder 1 genau ablesen, d. h. 4,5 bzw. 1. Er lässt sich selbst noch für 1/100 oder 1/1000 des Maximalwertes ablesen. Dies ist der Vorteil der logarithmischen Kurve.

Kurve für Sinusprüfungen

Häufig wird die unten dargestellte Kurve für die Durchführung von Sinusprüfungen verwendet. Die Asymptoten für Weg, Geschwindigkeit und Beschleunigung bleiben konstant. Beginnen wir mit einer Asymptote für konstante Geschwindigkeit. Aus dieser Gleichung kennen wir bereits:

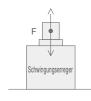

A : Beschleunigung f : Frequenz V : Geschwindigkeit

Es lässt sich ablesen, dass die Beschleunigung A um das 10-fache erhöht wird, wenn sich die Frequenz f um das 10-fache erhöht. Aus der Kurve unten lässt sich entnehmen, dass sich die Beschleunigung von 10 m/s² auf 100 m/s² erhöht, wenn die Frequenz von 10Hz auf 100Hz steigt.

$$A = (2\pi f)^2 D$$
 D: Weg

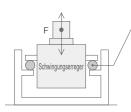
 $A = 2\pi fV$

lässt sich erkennen, dass sich die Beschleunigung A um das 100-fache (10²) erhöht, wenn die Frequenz f um das 10-fache steigt, proportional zum Quadrat von f. Aus der Kurve ist abzulesen, dass die Beschleunigung von 1 m/s² auf 100 m/s² ansteigt, wenn sich die Frequenz von 1 Hz auf 10 Hz erhöht.


Das heißt, bei konstanter Geschwindigkeit oder Beschleunigung ergibt sich die Steigung der Asymptote entsprechend der Abbildung.

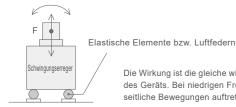
für die Installation von Schwingprüfsystemen

Schwingungsisolierung für Schwingprüfsystem

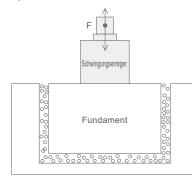

Ist ein Schwingprüfsystem in Betrieb, übertragen sich die Bewegungen und Kräfte auf den Aufstellungsort und die Umgebung. Besonders im Frequenzbereich von 2 bis 20 Hz kann das durch die Eigenfrequenz des Erregers zu weitreichenden Folgen führen. Daher empfiehlt sich eine Schwingungsisolierung.

1) Ohne Isolation

Die gesamte durch den Schwingerreger erzeugte Kraft wird auf den Hallenboden übertragen und verstärkt die Eigenschwingungen von Gebäuden und anderen Objekten. Der Schwingerreger selbst kann in Schwingung versetzt werden und in Bewegung geraten.

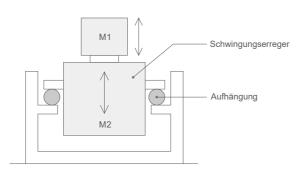

2) Aufhängung des Geräts

Flastische Flemente bzw. Luftfedern


Bei IMV wird dieses Verfahren mit Ausnahme von Kompaktanlagen angewendet. Dabei kann die Auslenkung bei niedrigen Frequenzen eingeschränkt werden (s. "Begrenzung des maximalen Weges"). In diesen Fällen ist die Aufhängung zu arretieren, so dass die Schwingungen in den Hallenboden eingetragen werden.

3) Lagerung des Gerätebodens

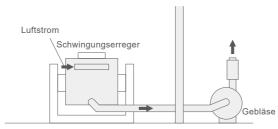
Die Wirkung ist die gleiche wie bei Aufhängung des Geräts. Bei niedrigen Frequenzen können seitliche Bewegungen auftreten (s. S. 51).


4) Fundamentisolation

Hierbei handelt es sich um die wirksamste Art der Schwingungsisolation. Generell gilt, dass die Masse des Fundaments das Zehnfache der Nennkraft des Systems in kg betragen sollte. Im Regelfall sollte die Masse des Fundaments das Zwanzigfache der in kg angegebenen Nennkraft des Systems betragen. Sollten Sie weitere Informationen zu dieser Lösung wünschen, wenden Sie

Begrenzung des maximalen Weges

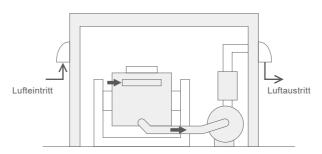
Schwingungen können auf unterschiedliche Weise isoliert werden. Alle wirken jedoch begrenzend auf die Größe der Auslenkung. Bei Aufhängung des Geräts reagiert das Schwingprüfsystem auf Bewegungen der Prüfprobe.


Speziell im Fall der Aufhängung des Geräts kommt es zur Anregung des Schwingerregers durch die Reaktionskraft. Liegt die Anregungsfrequenz im Bereich von 2 – 7 Hz und sind die Resonanzfrequenzen von Armaturaufhängung und Gerätaufhängung im gleichen Bereich, befinden sich die Bewegungen von Armatur und Gerät nahezu im "Antiphasenbereich", welches eine weitgehende

Einschränkung des absoluten Wegs der Armatur zur Folge hat. Es kann davon ausgegangen werden, das z.B. ein Weg von nur 10 mm bei 51 mmS-S des Schwingerregers zur Verfügung steht. Bei Isolation des Fundamentes kann die wirksame Masse des Fundaments mit dem Schwingerreger sehr viel größer als die Summe aus Prüfprobe und Armatur sein. Damit kann die Einschränkung für den möglichen Weg vernachlässigt werden.

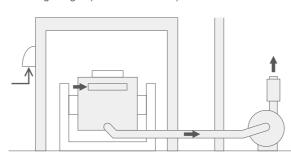
Schalldämmung

Bei der Aufstellung des Schwingprüfsystems muss der beim Betrieb entstehende Geräuschpegel mit beachtet werden. Es entstehen verschiedene Geräuscharten. Anregungsgeräusch, Ansauggeräusch (bei Systemen mit Luftkühlung), Gebläsegeräusch, Gebläseauslassgeräusch, Lüftergeräusch des Leistungsverstärkers usw. Daher sind unterschiedliche Möglichkeiten der Schalldämmung in Betracht zu ziehen. Das Anregungsgeräusch kann 100 dB bei einer Beschleunigung von 980 m/s² überschreiten. Das Ansauggeräusch beträgt ca. 90 dB; das Geräusch des Gebläses und des Gebläseauslasses erreicht zusammen ca. 80 dB, ist jedoch je nach Ausführung unterschiedlich.

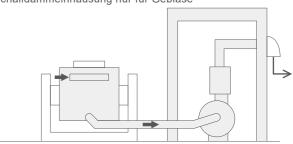

1) Lüfter außerhalb des Raumes installiert

Prinzipiell ist das eine einfache Aufstellungsvariante. Die Geräusche von Gebläse und Gebläseauslass können reduziert werden. Keine Änderung erfolgt beim Ansauggeräusch und dem Anregungsgeräusch des Schwingerregers. * Lüfter nicht ohne Weiteres zur Aufstellung im Freien geeignet.

2) Schalldämmkabine

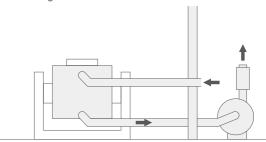

A. Schwingerreger und Gebläse

Reduzierung von Anregungs- und Gebläsegeräusch


* Bei ausgeschaltetem Lüfter, Rückströmung durch geeignete Maßnahmen

B. Nur Schwingerreger (Lüfter außerhalb)

Anregungs- und Gebläseansauggeräusch werden reduziert * Lüfter nicht ohne Weiteres zur Aufstellung im Freien geeignet.


C. Schalldämmeinhausung nur für Gebläse

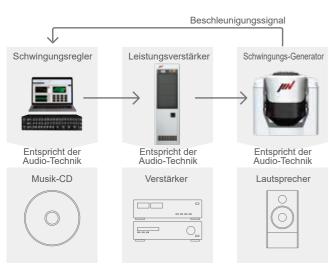
Das Gebläsegeräusch wird gemindert. Keine Änderung von Ansaug- und Anregungsgeräusch des Schwingerregers.

* Bei ausgeschaltetem Lüfter, Rückströmung durch geeignete Maßnahmen

3) Luftzuführung

Das Ansauggeräusch des Schwingerregers wird um ca. 5 dB reduziert. Zweck ist die Ansaugung von Frischluft von außen ohne Ansaugung von Raumluft (Reinraum usw.)

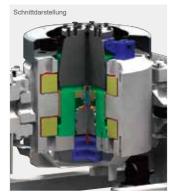
* Lüfter nicht ohne Weiteres zur Aufstellung im Freien geeignet.


für die Installation von Schwingprüfsystemen

Alle Komponenten sind aufeinander abgestimmt und können einzeln geregelt werden

Grundlagen und Technologie von Schwingprüfsystemen

■ Elektrodynamisches Schwingprüfsystem


Das Prinzip ist das gleiche wie bei Audiosystemen, bei denen die elektronischen Signale der Quelle, z.B. CD, verstärkt und im Lautsprecher in Audiosignale umgewandelt werden. Bei Schwingprüfsystemen übernehmen Schwingungserreger die Funktion der Lautsprecher in Audiosystemen. Anstelle der Tonquelle kommen Schwingungsregler zum Einsatz. Diese verursachen den elektrischen Strom durch die Verstärker und treiben die Schwingerreger. Der Unterschied besteht darin, dass die Schwingungen durch an den Prüfproben befestigten und/oder an Schwingtischen angebrachten Aufnehmern zur Überwachung von deren Bewegung an die Schwingungsregler zurück geleitet werden. Mit diesem Feedback werden die erzeugten Schwingungen an die vorgegebenen Prüfbedingungen angepasst.

Schwingerreger

Das Funktionsprinzip beruht auf der "Linke-Hand-Regel". Fließt Strom durch einen Draht, der sich in einem magnetischen Feld befindet, entsteht eine Kraft lotrecht zu diesem Feld und der Richtung des Stroms

■ Schwingungsregler

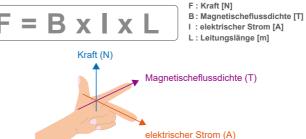
Die ursprüngliche Signalform lässt sich nicht einfach durch abspielen der im Feld gemessenen Schwingungsdaten reproduziert. Bedingt durch die Eigenschaften des Verstärkers, die gemeinsame Dynamik von Schwingerreger und Prüfproben erfolgt eine Verzerrung der Signale. Die Schwingungsregler erzeugen die benötigten Schwingungen zum automatischen Ausgleich dieses Verhaltens bzw. der Dynamik. Alle Regler von IMV werden durch die Forschungs- und Entwicklungsingenieure des Unternehmens nach Kundenvorgaben entwickelt und gefertigt. Kundenfreundlichkeit hat dabei in jedem Fall einen hohen Stellenwert.

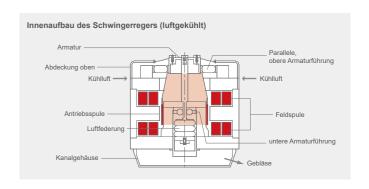
Leistungsverstärker

Die Aufgabe des Leistungsverstärkers ist die Stromversorgung des Schwingerregers zur Umwandlung der im Schwingungsregler erzeugten elektrischen Kleinsignale in den größeren Strom höherer Spannung. Die Leistungsverstärker von IMV arbeiten als Schaltverstärker. Zur Reduzierung von Leistungsaufnahme und Platzbedarf sind sie mit kompakten, leistungsstarken Komponenten führender Hersteller in diesem Bereich ausgestattet.

Power module SA-320

Funktionsprinzip



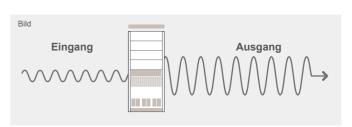


■ Schwingerreger

Das Funktionsprinzip beruht auf der "Linke-Hand-Regel".

Die folgende Gleichung erläutert die "Linke-Hand-Regel"

■ Kühlung des Schwingerregers


Das Schwingprüfsystem kann wahlweise mit Luft- oder Wasserkühlung geliefert werden. Jede Ausführung hat ihre spezifischen Merkmale. Bei der Auswahl des geeignete Kühlsystems sind folgende Punkte zu berücksichtigen:

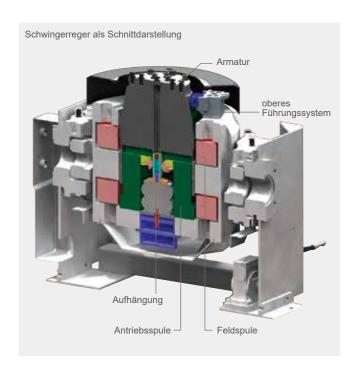
Kühlmethode	Luftkühlung				
Kühlung	Kühlung der Spulen erfolgt durch von außen angesaugte Luft. Die Ableitung erfolgt durch ein Gebläse	Die Spulen bestehen aus Rohr, in denen destilliertes Wasser zum Kühlen der Spulen zirkuliert. Die Abführung der Wärme erfolgt durch Wärmetauscher und Kühlturm			
Hauptmerkmal	Die Kühlung der Ausrüstung erfolgt ausschließlich durch ein Gebläse. Einfache Montage.	Der Betriebsgeräuschpegel liegt erheblich unter dem der Luftkühlung.			
Zu berücksichtigende Punkte	Zur Verringerung der Ansauggeräusche des Schwingerregers und der Geräusche der ausgeblasenen Luft durch das Gebläse sind u. U. Kanalanschlüsse oder Schalldämmungsmaßnahmen erforderlich.	Es wird eine Versorgungsquelle zur Bereitstellung des Kühlwassers benötigt.			

■ Leistungsverstärker

Der Leistungsverstärker des Systems versorgt den Schwingerreger mit elektrischer Energie. Der Leistungsverstärker erzeugt aus den elektrischen Signalen des Schwingungsreglers einen stärkeren Strom mit höherer Spannung.

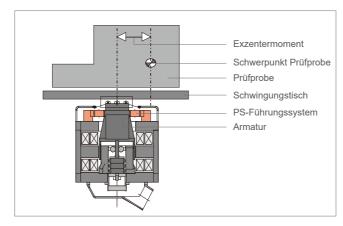
Grundlagen und Technologie von Schwingprüfsystemen

Erfindungen mit der Innovationskraft von IMV


Originale Technologie zur Verbesserung der Standfestigkeit und Leistung von Schwingerreger

■ Parallele, obere Armatur Führung

Schwingerreger generieren dynamische Belastungen, denen sie auch selber ausgesetzt sind. Bei der Parallelstützführung (PSG) handelt es sich um eine durch Patent geschützte Konstruktion zur Führung der Armatur. Damit wird eine wesentliche Verbesserung der Standfestigkeit und der



Zuverlässigkeit des Systems sowie der Qualität der erzeugten Schwingungen erreicht. Die kompakte Konstruktion gewährleistet im Vergleich zu Rollenstützen eine verbesserte Steifigkeit bei erhöhter Standfestigkeit und Eigenfestigkeit.

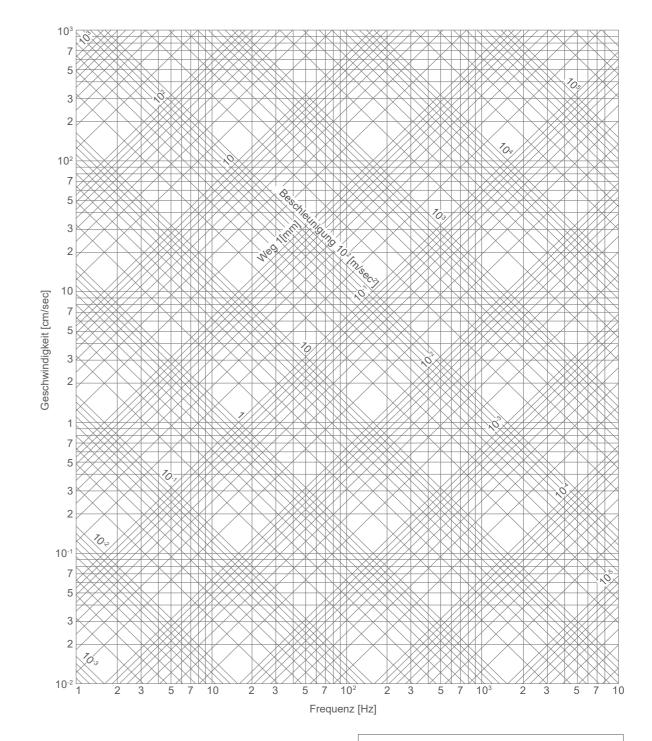
■ Hohes zulässiges Exzentermoment

Ist die Fläche der Armatur nicht groß genug für das Aufspannen der Prüfprobe, muss die Fläche mit Hilfe einer Vorrichtung oder eines Hilfstisches vergrößert werden. Dabei ist eine hohe Quersteifigkeit der Tischführung von besonderer Bedeutung, da es nicht einfach ist, den Schwerpunkt der Prüfprobe exakt auf der Mittellinie des Tisches zu positionieren. Je größer die Prüfprobe, umso wichtiger die Steifigkeit. Unser PS-Führungssystem (Parallelstützführung) gewährleistet eine um 130 % höhere Steifigkeit gegenüber herkömmlichen Systemen mit vergleichbarer Leistung. Mit diesem System können Proben, deren Schwerpunkt nicht genau auf der Mittellinie des Schwingungstisches liegt, mit höherer Beschleunigung geprüft

■ Kompatibilität von Quersteifigkeit und Genauigkeit der Wiedergabe der Signale

In der Regel stehen Quersteifigkeit und Genauigkeit der Signale miteinander im Widerspruch. Mit Hilfe des PS-Führungssystems können beide in Übereinstimmung gebracht werden. Es werden Schwingungen mit geringerer Verzerrung der Signale und höherer Wiedergabetreue erzeugt.

■ Verbesserung der Standfestigkeit


Gegenüber herkömmlichen Anlagen wurde eine um das Zehnfache längere Standfestigkeit des Systems bei gleichzeitiger Streckung der Wartungsintervalle erreicht.

■ Flexibilität bei der Durchführung von Prüfungen mit großen Auslenkungen

Schwingungsprüfungen mit Auslenkungen von 100 mm können mit hoher Flexibilität durchgeführt werden.

Umrechnungsdiagramm

Beziehungen zwischen Frequenz, Weg, Geschwindigkeit und Beschleunigung bei sinusförmigen Schwingungen

D=d [mm]

Geschwindigkeit

Beschleunigung

f : Frequenz [Hz]

Hinweis: D, V und A als Einzelamplitude

Benutzung des Diagramms

Bsp.1) f=50 Hz, D=1 mm V=31 cm/sec, A=99 m/sec²

Bsp.2) f=100 Hz, V=100 cm/sec D=1.6 mm, A=630 m/sec²

Bsp.3) f=600 Hz, A=60 m/sec² $D=0.0042 \text{ mm}(4.2 \mu\text{m}), V=1.6 \text{ cm/sec}$

IMV Prüflabor-Standorte

IMV Prüflabore entsprechen den Anforderungen der Kunden

IMV bietet seinen Kunden einen Rundum-Service

Seit der Eröffnung des Tokyo Test Lab 1998 als Japans erster Einrichtung für Schwingungsprüfungen haben wir sechs Teststandorte in Japan und zwei in Übersee eröffnet. Seit seiner Gründung führten die Spezialisten für Schwingungsprüfungen über 20.000 Projekte durch.

Zertifiziert nach ISO/IEC 17025

Die Prüflabore von IMV sind gemäß der internationalen Norm ISO / IEC 17025, in der die Prüffähigkeit und die Kalibrierung der Prüflabore festgelegt sind, zugelassen und arbeiten unter Qualitätskontroll-Managementsystemen.

[Übersicht Labore in Japan]

- ① Zertifizierungsnummer :RTL04240
- 2 Ausstellende Einrichtung: Japan Accrediation Board (JAB)
- 3 Datum der Zertifizierung : March 15th, 2016
- 4 Zertifizierungsbereich: Schwingung und Schock, Temperatur und Feuchte, ISO 16750-3 TEST I (Motor) und TEST IV (Karosserie)
- * IMV ist seit 2007 nach ISO / IEC17025 akkreditiert. Aufgrund steigenden Anforderungen durch unsere Kunden, hat IMV eine Zertifizierungsstelle gewählt, die Mitglied der ILAC (International Laboratory Accreditation Cooperation) ist.

【Übersicht Labor in Thailand】

- ① Zertifizierungsnummer :4784.01
- ② Ausstellende Einrichtung: A2LA
- 3 Datum der Zertifizierung : June 26th, 2018 4 Zertifizierungsbereich:
 - : Schwingungsprüfungen (Sinus, Rauschen, Schock) Temperaturzyklustest, Vibrations- und Temperaturwechselprüfung, Temperaturprüfung (warm), Temperaturprüfung (kalt), Temperatur- und Feuchtigkeitszyklustest,
 - Temperatur- und Feuchte-Verweilprüfungen

Das weltweit größte 350 kN Schwingprüfsystem mit einem Gleittisch

3-Achs Schwingprüfsystem für Erdbebensimulation

Kammer kombiniert mit einem Schwingprüfsystem mit Gleittisch

e-Test Centre Japan

Wir fokussieren uns auf die Lösung von Problemen unserer Kunden in unserem neuen Technologiezentrum. Wir bringen Japans Technologie für die Bewertung der Produkt-Zuverlässigkeit und unterschiedliche Unternehmen zusammen, um z. B. Analysetechniken zu vertiefen oder neue Testmethoden und Prüfgeräte zu entwickeln. Ab November 2019 wurden auch EMV-Tests durch engagierte Ingenieure gestartet.

- Zuverlässigkeitsbewertung für Elektromobilität (Elektromotoren und Wechselrichter für EV/HEV)
- Untersuchungen großer Teile (1 m Länge, 100 kg Gewicht) im Betrieb
- Kompatibel mit verschiedenen Umwelttests wie z. B. Temperatur-Zyklustest und Salzsprühnebel
- Hochtemperatur (900 °C Kammer) in Kombination mit Schwingungsprüfung verfügbar
- EMV-Prüfung durch engagierte Ingenieure
- Komplettes Sicherheitssystem

4102-142 Miyadera, Iruma, Saitama, 358-0014, Japan Tel: +81-4-2009-1043 Fax: +81-4-2009-1044 E-mail: info-etcj@imv-corp.com

Kammer kombiniert mit einem Prüfgeräte für Temperaturzyklen Schwingprüfsystem mit Gleittisch mit hohen Temperaturen

Zyklisches Korrosionsprüfsystem

Freifeldraum

Advanced Technology Centre for Environmental Testing

Für zukünftige Anforderungen steht eine große Auswahl an Schwingprüfsystemen für das Prüfen von Batterien und großen Prüflingen zur Verfügung. Das ATC setzt die Anforderungen nach ISO 27001, Informationssicherheits-Managementsystem bereits um.

- · Einführung von Japans größtem 350-kN-Schwingprüfsystem
- Kompatibel mit EV/HEV-Lithium-Ionen-Fahrzeugbatterietests
- Besitzt ein großes System für die Prüfung der Erdbebensicherheit zur Nachbildung von Erdbeben
- Hoch-Geschwindigkeits-Schock-Versuche möglich

2193-28, Yatsusawa, Uenohara-shi, Yamanashi, 409-0133, Japan Tel: +81-554-62-6677 Fax: +81-554-62-6678 E-mail: info-uenohara@imv-corp.com

4 ÖSTERREICH

IMV(THAILAND)CO.,LTD.

IMV America, Inc

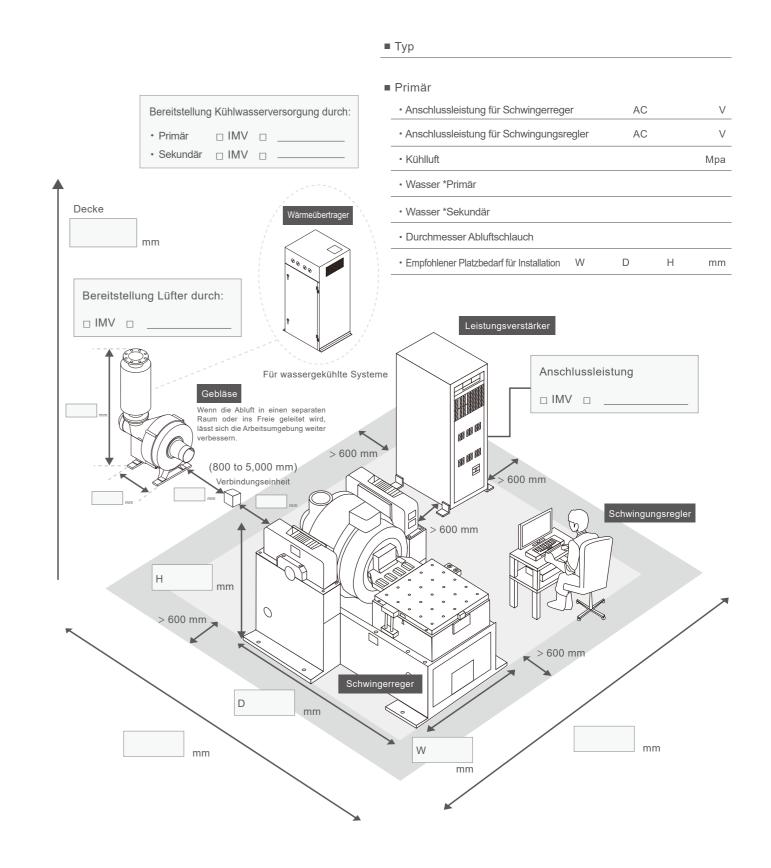
GROSSBRITANNIEN · IMV EUROPE LIMITED

· Manufacturing and **Demonstration Centre**

IMV TECHNO VIETNAM COMPANY LIMITED

Neuseeland

• HALT & HASS Consulting NZ


IMV EUROPE LIMITED German sales Office

France **IMV France**

System Layout

Empfohlener Einbau

*IMV unterstützt die Kunden bei der Einrichtung ihrer Räume.

Beitrag zu Qualität und Ökologie Servicebereich

IMV CORPORATION

Shanghai Representative