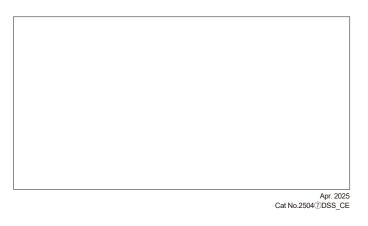


IMV CORPORATION

IMV EUROPE LIMITED

1 Dunsbridge Business Park, Shepreth, Royston, Herts, SG8 6RA, United Kingdom tel.+44 1763 269978

IMV EUROPE LIMITED German Sales Office


Landsberger Str. 406, D-81241 München, Germany tel.+49 89 21545 9900

IMV France

16 Passage du Chemin de Fer (Le Loft), 91400 Orsay, France

https://we-are-imv.com/en/

*The specifications and design are subject to change without notice.

World's leading supplier of high reliability vibration test systems

Wide range of industries benefit through quality and reliability improvements

Since it was founded in 1957, IMV has been proud to be at the forefront of research and development in vibration testing systems, supplying technically-advanced systems, with safety and reliability as first priorities.

The range of IMV vibration test systems includes single-axis and simultaneous muti-axis systems for up to six degrees of freedom simulation. A range of vibration and diagnostic instruments are also available. Engineering consultancy services to assist customers with vibration measurement, analysis and testing can also be provided.

IMV designs, manufactures, markets and maintains vibration-test systems which simulate actual vibration environments, and measuring systems which record and analyse vibration created or experienced by a product. IMV can also provide test laboratory and consultancy services.

We are proud to be contributing to the safety and reliability of a wide range of products by working with the automotive, aerospace, electrical machinery and structural engineering industries to solve problems caused by vibration.

Our policy is to continue to develop our skills and products to ensure we continue to provide the best possible service to our clients.

Chamber for Vertical Excitation

INDEX

Series Arrangements

[Basic Systems] Vibration Test Systems

[Multi-axis systems] Vibration Test Systems 2-Axis Changeover Systems DC-series

3-Axis Changeover Systems TC-series

2-Axis Simultaneous Systems DS-series

3-Axis Simultaneous Systems TS-series

6 Degrees of Freedom Systems TTS-series

High Excitation Force Water Cooled Range K-series >>> P.17 Low Acoustic Noise and Compact Range m-series >>> P.19

High Grade Range A-series Large Displacement Range J-series

Standard Range g-series

[Vibration Controller] K2+ Vibration Controller K2+

[Case Studies]

Electronic Parts

Transportation Test

Other Applications

Construction Machinery

Earthquake Resistance

Optional Units

>> P.60

>> P.03

>> P.07 » P.09

» P.13

>> P.15

>> P.35

>> P.36 >> P.37

>> P.38

>> P.39

>> P.41

>> P.48

>> P.53

>> P.54

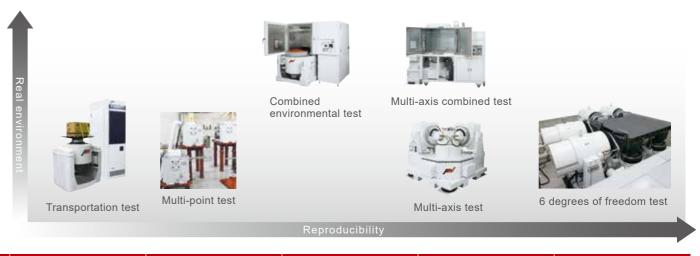
>> P.55

>> P 56 >> P.57

>> P.58

[Environmental Test Systems] Vibration Test System

hamber for both Vertical and Horizontal Excitation	>> P.61
hamber for Multi-Axis Excitation	>> P.63
refabricated Chamber for Large Specimens	>> P.64
echnical Guidance	>> P.65
conversion Table	>> P.72
MV Test Lab Network	>> P.73
overage	>> P.75
ystem Layout	>> P.76



Series Arrangements

Vibration Test Systems Lineup Chart

		Automotive parts	Aerospace	Electronic parts	Information and telecommunication equipment	Precision equipment	Electrical equipment	Transportation environment	Usage environment (S)
A-series J-series g-series	High Grade Range P09 Large Displacement Range P13 Standard Range P15	Car audio, Navigation system, Door mirror, Inverter, Motor, Light associated part, ECU associated part, Solenoid, Car-mounted meter, Electric power station motor, Combination meter, Fuel pump, Inlet system part, Hybrid associated part, Battery, Electric pump, Muffler, Catalyst, Fuel battery, ABS coil, Seat belt, Breaking system	Personal monitor TV, Communications equipment, Resin product, Seal material, Dish, Chair, Aircraft engine component, Space environmental utilization, Airborne equipment	LCD TV, Connector component, Car mounted electric component, General purpose motor, In-rack equipment, PC, Printed circuit board, Impact from transportation	Navigation system, Car mounted telecommunication equipment, Vending machine on the expressway, Industrial motor, Antenna associated component, Large antenna	Industrial robot, Digital camera, Lens, Optical equipment, Surface mounter associated component, Mobile phone, Copy machine, Video camera	Withstanding voltage transformer, Fuel battery, Inverter associated component, Space battery, Large lithium battery	Rail vehicle component, Construction equipment, Shipping on a rough road	Combination meter, Instrumental panel associated component, Solar system, Other car-mounted component, PC
K-series	High Excitation Force P17 Water Cooled Range	Brake, Catalyst, Heat insulation, Hydraulic sensor, Starter, Alternator, Muffler, Hybrid motor, Battery, Sensor, Dynamo, Power unit	Satellite equipment, Propeller engine	Servomotor, Refrigerator, Heater, Washing machine, Major electronics	Large parabolic antenna, Antenna associated component		Large battery equipment	Rail vehicle component, Railway component	Display
M-series	Low Acoustic Noise and Compact Range	Air-conditioner vent, ETC, ITS device, Car-mounted sensor, Car audio, Navigation system		Board, Mobile phone, Mobile products, Electronic component, Compact motor	ETC for motorcycle, Mobile phone	Medical equipment, Usage board, Digital camera, Semiconductor component			Structure(miniature)
DC-series	2-Axis Changeover Systems P35	Radiator, Car air-conditioner module, Compressor							
TC-series	3-Axis Changeover Systems P36	Radiator, Car air-conditioner module	Aviation communication equipment,	Real environmental shipping,	Navigation system, Car audio,	Video camera, Car audio, Copy	Large battery equipment, Power	Cushioning material, Packing material,	Earthquake simulation system,
DS-series	2-Axis Simultaneous Systems P37	Radiator, Car air-conditioner module, Back mirror	Aircraft component	Car audio, LCD panel, Domestic electric appliances	Bracket Bracket	machine, Multi-function printer	board, Control board	Transportation equipment	Earthquake resistance test system
TS-series	3-Axis Simultaneous Systems P38	Car audio, Navigation system, Air-condition- er, Vibration insulation mount, Radiator							
TTS-series	6 Degrees of Freedom Systems P39	Ride quality, Construction equipment, Cutaway body					Battery		Cabin for construction equipment

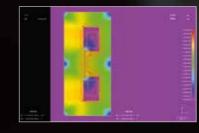
Vibration Test Systems Lineup Chart

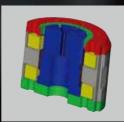
Vibration Test Systems Basic Systems

A-series >> P.09 High Grade Range J-series Large Displacement Range >> P.13 **G**-series Standard Range >> P.15 High Excitation Force Water Cooled Range K-series >> P.17 Low Acoustic Noise and Compact Range M-series »P.19 **Optional Units** >> P.21

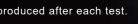
Careful attention to the design of the top cover using airflow modeling reduces the air velocity and the resulting acoustic noise.

Upper (armature) support system PS Guide


High vibration levels place extreme stress on the main parts of the vibration generator. The Parallel Slope Guide (PSG) uses a patented design to achieve a highly durable armature support which also gives excellent performance. The design provides sufficient stiffness to cross-axis forces and produces low distortion at


all levels of vibration.

One of the world's largest class air-cooled shaker systems


By taking advantage of the latest finite-element analysis tools, the magnetic circuit and cooling designs used in the IMV air-cooled range enable higher force ratings (to 74 kN) to be achieved. Air-cooled systems are lower cost both to install and to maintain compared to water-cooled systems.

Simple confirmation of reduction of CO₂ and electricity consumption

When combined with the IMV 'K2' vibration controller, the ECO-shaker system computes and displays electricity savings in real-time. A report of energy consumption can be produced after each test.

Energy-saving

[Basic systems] Vibration Test Systems [Basic systems] Vibration Test Systems

Vibration Test Systems Basic Syste

Environmentally-friendly vibration systems

Automatic energy saving

ECO-shaker is an electrodynamic vibration test system in which the output of the power amplifier, power input to the vibration generator and cooling blower speed are automatically optimised, according to the payload and test requirements.

Complicated manual settings are no longer needed.

Changes in the operating environment or in test level are accommodated without operator intervention.

[Features]

- Only vibration test levels need to be set
- · Automatic response to changes in sample under test or test level
- Continuous monitoring of temperatures used to control blower speed

*Operation condition selection system and method (JP Patent No. 4231095)

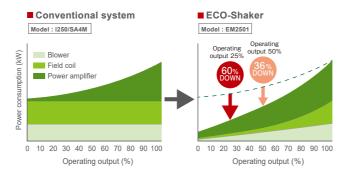
*Operation condition selection system and program (JP Patent No. 4263229)

Vibration controller K2+

Effect of energy saving

The lower the system output, the more energy saving can be achieved.

Calculation method


Calculation of CO2 reduction, referring to actual data of our i250/SA4M (Maximum force 32 kN)

1) Random 2) Average operating output: 25 % 3) Average operating ratio per year: 70 %

Save up to 80% on your running costs

Reduce yout CO² emissions by up to 80 %

Comparison of power consumption with the conventional system

Operation of ISM-EM (Power consumption)

Minimising the energy consumption of a conventional vibration test system would require complex calculation and adjustments to suit the test requirements. The Integrated Shaker Manager (ISM-EM) technology incorporated within the ECO-shaker system automatically controls the power amplifier output, field level and blower speed to achieve the maximum efficiency under all test conditions.

Upgrading existing systems

ISM-EM technology can be added to existing IMV vibration test systems by installing the ISM-EM module and additional software. Contact IMV or your local distributor for further information and delivery

Example design

Blower

Improvement of working conditions

Ensuring the vibration system is operating efficiently not only saves money; it also can reduce noise levels and heat dissipation into the workplace. This improves the working environment and can simplify initial installation.

Energy saving type vibration test system [ECO-Shaker]

Vibration test systems consume a lot of electricity. IMV has developed environmentally friendly products which minimise the required electric power and cut down electric consumption and CO2 emissions. Due to the great contribution to the promotion of efficient use of energy, the technology of ECO-Shaker received the Chairman's award from The Machinery Federation in 2012.

[Saving energy technology] EM:Energy Manager

Contribution to the environment

Many countries have introduced legislation, such as the Clean Development Mechanism in the Kyoto Protocol, and the EU Energy Efficiency Directive, obliging businesses and their products to be more energy-efficient. The IMV ECO-shaker systems help to meet these regulations.

[Basic systems] Vibration Test Systems [Basic systems] Vibration Test Systems

A-series High Grade Range

A new standard created by listening to our customers.

A wider range of test requirements and higher test specifications.

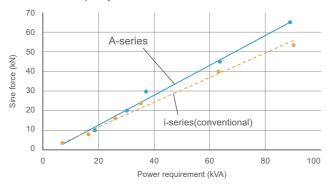
A-series meets the needs for such a versatile test environment.

Advanced automatic energy saving, high level of functionality and a protected test environment.

A-series improves the working environment of vibration testing.

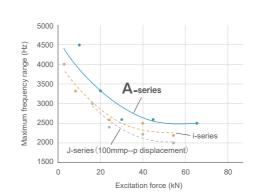
[Improvement of performance] [User friendly and Secure] [User first principle]

Improvement of performance


A-series meets the demand

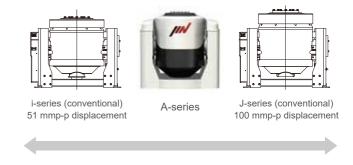
A wider range of test requirements and higher test specifications. A-series meets the needs for such a versatile test environment.

■ Improvement in excitation force

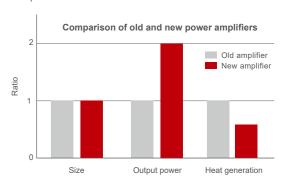

When compared with the conventional i- & J-series, the A-series has increased relative excitation force.

- ·Increased force per system power requirement
- Increased force per system mass
- ·Increased force per system size

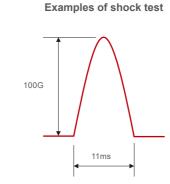
■ Increase in frequency range


In addition to the increased displacement of 76.2 mmp-p, the maximum frequency range is also increased when compared to the i- and J-series.

■ Standard 76.2 mmp-p displacement *Only for A30, A45, A65, A74


A-series has a displacement of 76.2 mmp-p (3-inch stroke), which provides a good balance within the specifications for velocity, acceleration and displacement.

This single system can be used for a very wide variety of tests.


■ Introduction of new power module

By developing a power amplifier that uses a new next generation Silicon Carbide power module, IMV has achieved low noise and high efficiency. This new power module is standard-issue for all A-series models.

■ High velocity shock testing

Where a test requires a high shock velocity, traditional shaker systems use a matching transformer to achieve the necessary lower field voltage. Since IMV's ECO-system has complete control over the field level, the field value can be adjusted to increase the maximum shock velocity capability of the system. By entering the specified shock profile into IMV's K2 controller. The field level in the shaker is automatically adjusted to ensure that the required velocity is achieved. A-series (EM amplifier model) provides a maximum of 4.6 m/s shock velocity testing.

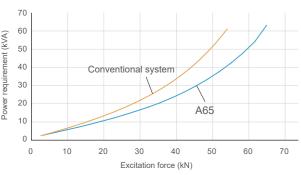
	i-series (conventional)	Model	i220/SA1HAG
		Rated Force Shock (kN)	16
		Maximum Velocity Shock (m/s peak)	2.2
		Maximum Displacement (mmp-p)	51
		Maximum Load (kg)	Not achievable (not enough velocity and displacement)

			J230/SA3HAG	J240/SA4HAG		J260/SA7HAG	
1	Rated Force Shock (kN)	-	40	55	80	108	-
J-series	Maximum Velocity Shock (m/s peak)	-	2.4	2.4	2.4	2.4	-
(conventional)	Maximum Displacement (mmp-p)	-	100	100	100	100	-
	Maximum Load (kg)	-	No	-			

		Model	A11/EM1HAG	A22/EM2HAG	A30/EM3HAG	A45/EM4HAG	A65/EM5HAG	A74/EM8HAG
		Rated Force Shock (kN)	22 (16.5)	44 (36)	60 (50)	90 (80)	130 (120)	180 (160)
	A-series	Maximum Velocity Shock (m/s peak)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)	2.5 (3.5)
		Maximum Displacement (mmp-p)	51 (55)	51 (55)	76.2	76.2	76.2	76.2
		Maximum Load (kg)	5	14	17	30	48	86

^{*}Maximum load on bare table

User friendly and Secure

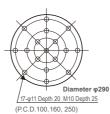

A-series changes

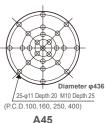
Advanced automatic energy saving, high level of functionality and a protected test environment. A-series provides a better working environment for vibration testing.

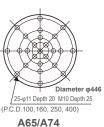
■ Lower power consumption

In comparison with the same class of conventional systems (i-, J-series), the A-series achieves lower power consumption. With an automatic energy-saving function, increased energy savings are achieved across all force ranges.

Comparison of consumed power per excitation force


■ International safety standards


■ Table Insert Pattern (Unit:mm)



A30

■ Specifications

			A11/	⊘ A11/	A22/		A30/	⊘ A30/	A45/		A65/		⊘ A74/	Ø A74/	⊘ A74/
	System	n Model		EM1HAG	SA2HAG	EM2HAG	SA3HAG	EM3HAG	SA4HAG	EM4HAG		EM5HAG*7	EM6HAG*7	EM8HAG*7	EM10HAG*7
	Freque	ncy Range (Hz)	0-4500*4	0-4500*4	0-3300	0-3300	0-2600	0-2600	0-2600	0-2600	0-2600*5	0-2600*5	0-2600*5	0-2600*5	0-2600*5
		Sine (kN)	11	11	22	22	30	30	45	45	65	65	74	74	74
	Rated	Random (kN rms)*1	11	11	22	22	30	30	45	45	65	65	74	74	74
	Force	Shock (kN)	22	22	44	44	60	60	90	90	130	130	148	180	222
		High Velocity Shock (kN)	-	16.5	-	36	-	50	-	80	-	120	120	160	170
		Sine (m/s²)	1000	1000	1000	1000	900	900	900	900	900	900	1000	1000	1000
	Maximum	Random (m/s² rms)	630	630	630	630	630	630	630	630	630	630	630	630	630
	Acc.	Shock (m/s² peak)	2000	2000	2000	2000	1818	1818	1800	1800	1806	1806	2000	2000	2000
System		High Velocity Shock (m/s² peak)	-	1500	-	1636	-	1515	-	1600	-	1666	1621	2000	2000
Specifications		Sine (m/s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Maximum Vel.	Shock (m/s peak)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	vei.	High Velocity Shock (m/s peak)	-	3.5	-	3.5	-	3.5	-	3.5	-	3.5	3.5	3.5	3.5
	Maximum	Sine (mmp-p)	51	51	51	51	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2
	Disp.	High Velocity Shock (mmp-p)	-	55	-	55	-	76.2	-	76.2	-	76.2	76.2	76.2	76.2
	Maximum Travel (mmp-p)		64	64	64	64	82	82	82	82	82	82	82	82	82
	Maximum Load (kg)		200	200	300	300	400	400	600	600	1000	1000	1000	1000	1000
	Power Requirements (kVA)*2		20.4	20.4	30	30	36	36	57	57	83	83	100	100	100
	Breaker Capacity (A)*3		40	40	60	60	75	75	100	100	150	150	250	250	250
	Model				A22	A22	A30	A30	A45	A45			A74	A74	A74
	Armatu	re Mass (kg)	11	11	22	22	33	33	50	50	72	72	74	74	74
	Armatur	e Diameter (φmm)	210	210	280	280	290	290	436	436	446	446	446	446	446
Vibration	Allowable	Eccentric Moment (N·m)	294	294	700	700	850	850	1550	1550	1550	1550	1550	1550	1550
Generator	Dimensi	ons (mm) W×H×D	946 × 827 × 676	946 × 827 × 676	1038 × 955 × 775	1038 × 955 × 775	1100 × 1048 × 840	1100 × 1048 × 840	1232 × 1215 × 1040	1232 × 1215 × 1040	1310 × 1253 × 1040				
	Shaker B	ody Diameter (φmm)	585	585	678	678	725	725	825	825	925	925	925	925	925
	Mass (k	(g)	1080	1080	1600	1600	2100	2100	3200	3200	4200	4200	4200	4200	4200
						2BGH2-A22	1BGH3-A30	2BGH3-A30	1BGH4-A45	2BGH4-A45	1BGH5-A65	2BGH5-A65	2BGH6-A74	2BGH8-A74	2BGH10-A74
Power	Maximu	ım Output (kVA)	12	12	24	24	31	31	44	44	68	68	100	100	100
Amplifier	Dimens	ions (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850
	Mass (I	(g)	280	470	350	560	520	590	900	1000	1000	1150	1340	1850	2400
Controller	Vibratio	on Controller						See Vib	ration Cont	troller K2					
	Cooling	Method							Air cooling	1					
Coolina		Dimensions (mm) W × H × D*6	1023 × 2285 × 531	1023 × 2285 × 531	929 × 2175 × 534	929 × 2175 × 534	1043 × 2335 × 640	1043 × 2335 × 640	1160 × 2405 × 787	1160 × 2405 × 787	1294 × 2540 × 871	1294 × 2540 × 871	1462 × 2800 × 927	1462 × 2800 × 927	1462 × 2800 × 927
Cooming	Blower	Mass (kg)	150	150	150	150	150	150	250	250	268	268	320	320	320
	l –	Nattage (kw)	4.0	4.0	4.0	4.0	5.5	5.5	11	11	18.5	18.5	30	30	30
		Duct Hose Diameter (φ)	125	125	200	200	200	200	250	250	250	250	250	250	250

^{**1} Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requirements.

*2 Power supply: 3-phase 380/400/415/440 V, 50/60 Hz. A transformer is required for other supply voltages.

*3 Breaker capacity for 400 V

*4 Above 4000 Hz, the force rolls-off at a rate of -6 dB/oct.

*5 Above 2000 Hz, the force rolls-off at a rate of -12 dB/oct.

*6 Specification above applies to 50 Hz. Dimensions change for 60 Hz.

*7 An export license is required for exporting the shaker system of over 50 kN sine force.

*The specification shows the maximum system performance. For long-duration tests, system must be de-rated up to 70%.

Continuous use at maximum levels may cause failure. Please contact IMV if your system operates at more than 70%.

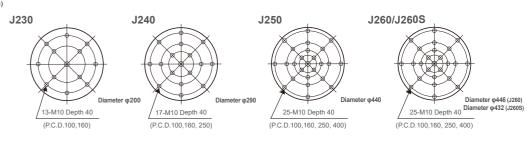
*For random vibration tests, please set the test definition of the peak value of acceleration waveform to operate at less than the maximum acceleration of shock.

*Frequency range values vary according to the sensor and vibration controller.

*Armature mass and acceleration may change when a chamber is added.

J-series Large-Displacement Range

J-series accommodates high-velocity and large-displacement testing


Long-duration shock tests require high velocity and large displacement.

J-series is a high-functionality system that offers usability and durability with features that accommodate high-velocity and large-displacement testing.

[Expanded maximum test range] • Maximum velocity of Sine force: 2.4 m/s • Maximum velocity of Shock force: 4.6 m/s • Maximum displacement: 100 mmp-p [Patented upper (armature) support system PS Guide] Parallel Slope Guide is standard

[All models can be directly paired with a climatic chamber]

■ Table Insert Pattern (Unit: mm)

■ Specifications

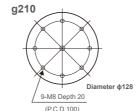
	Systen	n Model	J230/SA3HAG	J230S/SA7HAG	J240/SA4HAG	J240/SA6HAG	J250/SA5HAG	J250/SA6HAG	J260/SA7HAG*7	J260S/SA16HAG*7
	Frequer	ncy Range (Hz)	0-3000	0-3000	0-2400	0-2400	0-2200	0-2200	0-2600*4	0-2000
	D	Sine (kN)	16	16	24	24	35	40	54	54
	Rated Force	Random (kN rms)*1	16	16	24	24	35	40	54	54
	1 0100	Shock (kN)	40	40	55	70	70	80	108	196
		Sine (m/s²)	941	888	923	923	777	888	857	857
	Maximum Acc.	Random (m/s² rms)	658	622	646	646	544	622	600	600
System	7100.	Shock (m/s² peak)	2000	2000	2000	2000	1555	1777	1714	2000
Specifications	Maximum	Sine (m/s)	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
	Vel.	Shock (m/s peak)	2.4	3.5	2.4	3.6	2.4	2.4	2.4	4.6
	Maximum Disp.	Sine (mmp-p)	100	100	100	100	100	100	100	100
	Maximu	m Travel (mmp-p)	120	120	120	120	120	120	116	116
	Maximu	m Load (kg)	300	300	400	400	600	600	1000	1000
P B	Power Requirements (kVA)*2		28	38	38	52	53	57	86	96
	Breaker Capacity (A)*3		50	75	75	100	100	100	150	225
	Model		J230	J230S						J260S
	Armatu	re Mass (kg)	17	18	26	26	45	45	63	63
	Armature Diameter (φmm)		200	200	290	290	440	440	446	432
Vibration	Allowable	Eccentric Moment (N·m)	700	700	850	850	1550	1550	1550	1550
Generator	Dimens	sions (mm) W×H×D	1124 × 1079 × 850	1124 × 1079 × 850	1234 × 1145 × 890	1234 × 1145 × 890	1463 × 1301 × 1100	1463 × 1301 × 1100	1527 × 1319 × 1100	1632×1388×1130
	Shaker	Body Diameter(φmm)	630	630	720	720	860	860	920	920
	Mass (I	(g)	1800	1800	2400	2400	3500	3500	4100	5000
	Model			1BGH7-J230						1BGH16-J260S
	Maximu	m Output (kVA)	23	30	34	40	50	57	70	76
Power	Dimens	ions (mm) W×H×D	580×1950×850	580×1950×850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	1740×1950×850
Amplifier	Mass (F	(g)	330	500	440	1000	880	910	1400	3200
Controller	Vibratio	n Controller				See Vibration C	ontroller K2			
	Cooling	Method				Air cool	ing			
	Di	mensions (mm) W×H×D*5	1044×2285×704	1044×2285×704	929×2175×534	929×2175×534	1160 × 2405 × 787	1160×2405×787	1160×2405×787	1160 × 2405 × 787
Cooling		ass (kg)	150	150	150	150	250	250	250	250
	Blower	/attage (kw)	3.7	3.7	5.5	5.5	11	11	15	15
		uct Hose Diameter (φ)	200	200	200	200	250	250	250	250

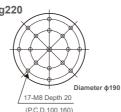
■ Eco Specifications

	System I		∅ J230/EM3HAG	J240/EM4HAG	J250/EM5HAG	Ø J250/EM6HAG	
	Frequer	ncy Range (Hz)	0-3000	0-2400	0-2200	0-2200	0-2600*4
		Sine (kN)	16	24	35	40	54
	Rated	Random (kN rms)*1	16	24	35	40	54
	Force	Shock (kN)	40	55	70	80	108
		High Velocity Shock (kN)*6	30	48	68	77	96
		Sine (m/s²)	941	923	777	888	857
	Maximum	Random (m/s²rms)	658	646	544	622	600
	Acc.	Shock (m/s² peak)	2000	2000	1555	1777	1714
System		High Velocity Shock (m/s² peak)*6	1764	1846	1511	1711	1523
Specifications		Sine (m/s)	2.4	2.4	2.4	2.4	2.4
o poomounome	Maximum Vel.	Shock (m/s peak)	2.4	2.4	2.4	2.4	2.4
	VCI.	High Velocity Shock (m/s peak)*6	3.5	3.5	3.5	3.5	3.5
	Maximum	Sine (mmp-p)	100	100	100	100	100
	Disp.	High Velocity Shock (mmp-p)*6	100	100	100	100	100
	Maximu	m Travel (mmp-p)	120	120	120	120	116
	Maximu	ım Load (kg)	300	400	600	600	1000
	Power Requirements (kVA)*2		28	38	53	57	86
	Breaker	Capacity (A)*3	50	75	100	100	150
	Model		J230	J240	J250	J250	J260
	Armature Mass (kg)		17	26	45	45	63
	Armatu	re Diameter (φmm)	200	290	440	440	446
Vibration	Allowable	Eccentric Moment (N·m)	700	850	1550	1550	1550
Generator	Dimens	ions (mm) W×H×D	1124×1079×850	1234×1145×890	1463 × 1301 × 1100	1463 × 1301 × 1100	1527 × 1319 × 1100
	Shaker I	Body Diameter (φmm)	630	720	860	860	920
	Mass (k	(g)	1800	2400	3500	3500	4100
	Model		2BGH3-J230	2BGH4-J240	2BGH5-J250	2BGH6-J250	2BGH7-J260
Power	Maximu	um Output (kVA)	23	34	50	57	70
Amplifier	Dimens	sions (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	1160×1950×850
	Mass (kg)	380	490	930	960	1400
Controller	Vibratio	on Controller		\$	See Vibration Controller K2		
	Cooling	Method			Air cooling		
		mensions (mm) W×H×D*5	1044×2285×704	929×2175×534	1160×2405×787	1160×2405×787	1160×2405×787
Cooling	_ M	ass (kg)	150	150	250	250	250
	Blower	/attage (kw)	4.0	4.0	11	11	15
	Duct Hose Diameter (φ)		200	200	250	250	250

^{*1} Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requiren *2 Power supply: 3-phase 380/400/415/440 V, 50/60 Hz. A transformer is required for other supply voltages. *3 Breaker capacity for 400 V *4 Above 2000 Hz, the force rolls-off at a rate of -12 dB/oct. *5 Specification above applies to 50 Hz. Dimensions change for 60 Hz. *6 For high velocity option *7 An export license is required for exporting the shaker system of over 50 kN sine force. **The specification shows the maximum system performance. For long-duration tests, system must be de-rated up to 70%. Continuous use at maximum levels may cause failure. Please contact IMV if your system operates at more than 70%. **For random vibration tests, please set the test definition of the peak value of acceleration waveform to operate at less than the maximum acceleration *Frequency range values vary according to the sensor and vibration controller. **Armature mass and acceleration may change when a chamber is added.

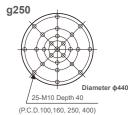
g-series Standard Range




The g-series is a standard range and easier to maintain than custom products.

The g-series is also available with the alternative, cost efficient DMA-series amplifier range. Please check for details

[Maximum test range] •Maximum acceleration: 1250 m/s² •Maximum velocity: 3.5 m/s •Maximum displacement: 51 mmp-p •Maximum loading mass: 600 kg [All models can be directly paired with a climatic chamber.]


■ Table Insert Pattern (Unit: mm)

■ Specifications

	System		g210/SA1HAG	g220/SA1HAG	g230/SA2HAG	g240/SA3HAG	g250/SA4HAG	g250/SA5HAG
	Frequer	ncy Range (Hz)	0-4000	0-3300	0-3000	0-2600	0-2500	0-2500
	D	Sine (kN)	3	8	16	24	32	40
	Rated Force	Random (kN rms)*1	3	8	16	24	32	40
	. 0.00	Shock (kN)	9	16	32	48	64	80
		Sine (m/s²)	1000	1250	1250	1200	914	1142
	Maximum Acc.	Random (m/s² rms)	700	875	875	840	640	800
0	7100.	Shock (m/s² peak)	2000	2000	2000	2000	1828	2000
System Specifications	Maximum	Sine (m/s)	2.2	2.2	2.2	2.2	2.2	2.2
Opecinications	Vel.	Shock (m/s peak)	2.2	2.2	2.2	2.2	2.2	2.2
	Maximum Disp. Sine (mmp-p)		30	51	51	51	51	51
	Maximum Travel (mmp-p)		40	60	64	68	68	68
		m Load (kg)	120	200	300	400	600	600
	Power Requirements (kVA)*2		6.8	16.4	26	36	51	57
	Breaker Capacity (A)*3		15	30	50	75	100	100
	Model		g210	g220	g230	g240	g250	g250
	Armature Mass (kg)		3	6.4	12.8	20	35	35
	Armature Diameter (φmm)		128	190	200	290	440	440
Vibration	Allowable Eccentric Moment (N·m)		160	294	700	850	1550	1550
Generator	Dimens	ions (mm) W×H×D	868 × 700 × 458	1020×903×550	1124 × 957 × 860	1234 × 997 × 890	1463 × 1187 × 1100	1463 × 1187 × 1100
	Shaker E	Body Diameter (φmm)	458	550	630	720	860	860
	Mass (k	(g)	350	900	1500	2000	3000	3000
	Model		SA1HAG-g10	SA1HAG-g20	SA2HAG-g30	SA3HAG-g40	SA4HAG-g50	SA5HAG-g50
Power		ım Output (kVA)	5	10	20	30	40	50
Amplifier		sions (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850
	Mass (F	07	240	280	300	410	850	880
Controller		n Controller			See Vibration			
	Cooling	Method			Air co			
		mensions (mm) W×H×D ⁻⁵	600 × 1905 × 557	808 × 2085 × 733	1044 × 2285 × 704	929 × 2175 × 534	1160 × 2405 × 787	1160 × 2405 × 787
Cooling	Blower	ass (kg)	45	85	150	150	250	250
	W	attage (kw)	0.4	1.5	3.7	5.5	11	11
	Du	ıct Hose Diameter (φ)	125	125	200	200	250	250

■ Eco Specifications

			Ø g220/EM1HAG	g230/EM2HAG	Ø g240/EM3HAG	Ø g250/EM4HAG	Ø g250/EM5HAG	
	Freque	ncy Range (Hz)	0-3300	0-3000	0-2600	0-2500	0-2500	
		Sine (kN)	8	16	24	32	40	
	Rated	Random (kN rms)*1	8	16	24	32	40	
	Force	Shock (kN)	16	32	48	64	80	
		High Velocity Shock (kN)*6	10	23	36	49	63	
		Sine (m/s ²)	1250	1250	1200	914	1142	
	Maximum	Random (m/s²rms)	875	875	840	640	800	
	Acc.	Shock (m/s² peak)	2000	2000	2000	1828	2000	
System		High Velocity Shock (m/s² peak)*6	1562	1796 1800		1400	1800	
Specifications		Sine (m/s)	2.2	2.2	2.2	2.2	2.2	
	Maximum Vel.	Shock (m/s peak)	2.2	2.2	2.2	2.2	2.2	
	VCI.	High Velocity Shock (m/s peak)*6	3.5	3.5	3.5	3.5	3.5	
	Maximum	Sine (mmp-p)	51	51	51	51	51	
	Disp.	High Velocity Shock (mmp-p)*6	51	51	51	51	51	
	Maximum Travel (mmp-p)		60	64	68	68	68	
	Maximu	ım Load (kg)	200	300	400	600	600	
	Power Requirements (kVA)*2		16.4	26	36	51	57	
	Breaker Capacity (A)*3		30	50	75	100	100	
	Model		g220	g230	g240	g250	g250	
	Armature Mass (kg)		6.4	12.8	20	35	35	
	Armature Diameter (φmm)		190	200	290	440	440	
Vibration	Allowable	Eccentric Moment (N·m)	294	700	850	1550	1550	
Generator	Dimens	ions (mm) W×H×D	1020 × 903 × 550	1124 × 957 × 860	1234 × 997 × 890	1463 × 1187 × 1100	1463 × 1187 × 1100	
	Shaker	Body Diameter (φmm)	550	630	720	860	860	
	Mass (F	(g)	900	1500	2000	3000	3000	
			EM1HAG-g20	EM2HAG-g30	EM3HAG-g40	EM4HAG-g50	EM5HAG-g50	
Power	Maxim	um Output (kVA)	10	20	29	40	50	
Amplifier	Dimens	sions (mm) W×H×D	580 × 1950 × 850	580 × 1950 × 850	580 × 1950 × 850	1160 × 1950 × 850	1160 × 1950 × 850	
	Mass (kg)	280	350	460	900	930	
Controller	Vibratio	on Controller			See Vibration Controller K2			
	Cooling	Method			Air cooling			
	Di	mensions (mm) W×H×D*5	808 × 2085 × 733	1044 × 2285 × 704	929 × 2175 × 534	1160 × 2405 × 787	1160 × 2405 × 787	
Cooling	Blower	ass (kg)	85	150	150	250	250	
	N	attage (kw)	1.5	4.0	4.0	11	11	
	Duct Hose Diameter (φ)		125	200	200	250	250	

^{*1} Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requirements.

*2 Power supply; 3-phase 380/400/415/440 V, 50/60 Hz. A transformer is required for other supply voltages.

*3 Breaker capacity for 400 V

*4 Above 2000 Hz, the force rolls-off at a rate of -12 dB/oct.

*5 Specification above applies to 50 Hz. Dimensions change for 60 Hz.

*6 For high velocity option

*7 An export license is required for exporting the shaker system of over 50 kN sine force.

*The specification shows the maximum system performance. For long-duration tests, system must be de-rated up to 70%.

Continuous use at maximum levels may cause failure. Please contact IMV if your system operates at more than 70%.

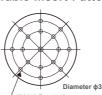
*For random vibration tests, please set the test definition of the peak value of a caceleration waveform to operate at less than the maximum acceleration of shock.

*Frequency range values vary according to the sensor and vibration controller.

*Armature mass and acceleration may change when a chamber is added.

K-series

High-Excitation-Force Water-Cooled Range

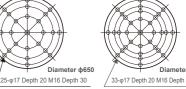


High-excitation-force and silent water-cooled system for improving your test environment

K-series, the high-excitation-force water-cooled vibration-simulating test systems fully developed by IMV. Advanced performance from the K-series will significantly improve your test environment.

[Silent system design] The water-cooling system produces neither the intake nor exhaust sounds that an air-cooling system does. [Record of significant accomplishments] IMV has developed the most advanced water-cooled system

■ Table Insert Pattern (Unit: mm)


K060

K080

(P.C.D.203.2, 406.4, 558.8) K125A/K125LS

K200

(P.C.D. 203.2, 406.4, 558.8, 711.2) K350

■ Specifications

K030

			K030/SA4HAG					K100LS/SA16HAG*6	K125LS/SA20HAG*6	K200/SA24HAG*6	K350/SA36HAG*6
	Freque	ency Range (Hz)	0-3000	0-2500	0-2500	0-2500	0-2500	0-2000	0-2000	0-2000	0-2000
		Sine (kN)	30.8	61.7	80	100	125	100	125	200	350
	Rated Force	Random (kN rms)*1	21.5	61.7	80	100	125	100	125	200	315
	1 0100	Shock (kN)	61.6	123.4	160	200	250	200	250	400	700
		Sine (m/s²)	1000	1000	1000	1000	1000	1000	1000	1000	1000
	Maximum Acc.	Random (m/s² rms)	557	700	700	700	700	700	700	700	700
System	Acc.	Shock (m/s² peak)	2000	2000	2000	2000	2000	2000	2000	2000	2000
Specifications	Maximum	Sine (m/s)*3	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Vel.	Shock (m/s peak)	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.4	3.5
	Maximum Disp.	Sine (mmp-p)	51	51	51	51	51	100	100	76.2	76.2
	Maxim	um Travel (mmp-p)	58	60	59	62	62	116	116	86	94
	Maximu	m Load (kg)	500	1000	1000	2000	2000	2000	2000	2000	3000
	Power	Requirements (kVA)*2	49	87	100	150	170	170	190	300	325
	Breaker Capacity (A)*4		100	150	175	300	300	300	350	600	400/200
	Model					K125A	K125A	K125LS	K125LS	K200	K350
	Armature Mass (kg)		27	40	60	80	80	100	100	200	350
Vibration	Armatı	ure Diameter (φmm)	320	400	446	560	560	560	560	650	760
Generator	Allowabl	e Eccentric Moment (N+m)	980	980	1550	2450	2450	2450	2450	4900	4900
	Dimen	sions (mm) W×H×D	1100×1090×824	1380×1085×1000	1595×1200×1050	1776×1373×1300	1776×1373×1300	1990×1546×1370	1990×1546×1370	2465×1908×1740	3020×2306×2080
	Shaker	Body Diameter (φmm)	760	900	1000	1100	1100	1100	1100	1260	1630
	Mass ((kg)	3000	3700	5000	7000	7000	8000	8000	19000	40000
			1BGH4-K030	1BGH8-K060	1BGH10-K080	1BGH14-K125A	1BGH18-K125A	1BGH16-K125LS	1BGH20-K125LS	1BGJ24-K200	1BGH36-K350
Power	Maxim	um Output (kVA)	33	60	100	98	124	124	155	320	400
Amplifier	Dimen	sions (mm) W×H×D	1160×1950×850	1160×1950×850	1160×1950×850	1740×1950×850	1740×1950×850	1740×1950×850	1740×1950×850	2900×1950×850	4060×1950×850
	Mass ((kg)	950	1350	1500	2500	2600	2600	3300	5000	5450
Controller	Vibrati	on Controller					ibration Control				
		g Method						plifier: Air Cooli	-		
Cooling	Primary	Cooling Water ({/min)	195	260	390	390	390	390	390	650*5	650*5
	_	Dimensions (mm) W×H×D	580×1700×850						580×1700×850	1050×1900×850	1200×1950×1400
	Exchanger 1	Mass (kg)	400	400	400	400	400	400	400	600	950

■ Eco Specifications

	System Model	K030/ EM4HAG	K062/ EM8HAG*6	K080/ EM10HAG*6	K100A/ EM14HAG ^{±6}	K125A/ EM18HAG ⁺⁶	K125A/ EM30HAG ^{±6}	K100LS/ EM16HAG*6	K125LS/ EM20HAG*6	K125LS/ EM30HAG*	€ K200/ EM24HAG*6	€ K200/ EM50HAG*6		€ K350/ EM50HAG*6
	Frequency Range (Hz)	0-3000	0-2500	0-2500	0-2500	0-2500	0-2500	0-2000	0-2000	0-2000	0-2000	0-2000	0-2000	0-2000
	g Sine (kN)	30.8	61.7	80	100	125	125	100	125	125	200	200	350	350
	Random (kN rms)*1	21.5	61.7	80	100	125	125	100	125	125	200	200	315	315
LIS.	Shock (kN)	61.6	123.4	160	200	250	375	200	250	375	400	1000	700	900
atio	High Velocity Shock (kN)*6	-	-	110	130	165	245	130	165	245	260	-	700	-
cific	g Sine (m/s²)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Specifications	Random (m/s²rms)	557	700	700	700	700	700	700	700	700	700	700	700	700
E	.틀 Shock (m/s²peak)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
System	High Velocity Shock (m/s² peak)*6	-	-	1833	1625	2000	2000	1300	1650	2000	1300	-	2000	-
6	igitized Sine (m/s)*3 ightarrow Sine (m/s)*3	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Shock (m/s peak)	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.4	2.4	3.5	3.5
	High Velocity Shock (m/s peak)*6	-	-	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	-	3.5	-
	Sine (mmp-p)	51	51	51	51	51	51	100	100	100	76.2	76.2	76.2	76.2
	Maximum Travel (mmp-p)	58	60	59	62	62	62	116	116	116	86	86	94	94
	Maximum Load (kg)	500	1000	1000	2000	2000	2000	2000	2000	2000	2000	2000	3000	3000
	Power Requirements (kVA)*2	49	87	100	150	170	170	170	190	190	300	300	325	325
	Breaker Capacity (A)*4	100	175	175	300	350	350	300	350	350	-	-	-	-
-					K125A	K125A	K125A	K125LS	K125LS	K125LS	K200	K200	K350	K350
rator	Armature Mass (kg)	27	40	60	80	80	80	100	100	100	200	200	350	350
ene	Armature Diameter (φmm)	320	400	446	560	560	560	560	560	560	650	650	760	760
Q	Allowable Eccentric Moment (N+m)	980	980	1550	2450	2450	2450	2450	2450	2450	4900	4900	4900	4900
tio	Dimensions (mm) W×H×D	1100×1090×824	1380×1085×1000	1595×1200×1050	1776×1373×1300	1776×1373×1300	1776×1373×1300	1990×1546×1370	1990×1546×1370	1990×1546×1370	2465×1908×1740	2465×1908×1740	3020×2306×2080	3020×2306×2080
ibra	Shaker Body Diameter (qmm)	760	900	1000	1100	1100	1100	1100	1100	1100	1260	1260	1630	1630
>	Mass (kg)	3000	3700	5000	7000	7000	7000	8000	8000	8000	19000	19000	40000	40000
fier		2BGH4-K030	2BGH8-K060		2BGH14-K125A						2BGJ24-K200	2BGJ50-K200	2BGH36-K350	2BGH50-K350
mplifier	Maximum Output (kVA)	33	60	100	98	124	124	124	155	155	320	300	400	400
Pr A	Dimensions (mm) W×H×D	1160×1950×850	1160×1950×850	1160×1950×850	1740×1950×850	1740×1950×850	2320×1950×850	1740×1950×850	1740×1950×850	2320×1950×850	2900×1950×850	4060×1950×850	4060×1950×850	4060×1950×850
Powe	Mass (kg)	1300	1350	1500	2500	2600	3550	2650	3350	3550	5000	6000	5450	7000
	Vibration Controller						See Vil	ration Cont	roller K2			'		
	Cooling Method					Shake	r: Water cool	ing/Power A	mplifier: Air	Cooling				
Cooling	Primary Cooling Water (I/min)	195	260	390	390*5	390*5	390*5	390*5	390*5	390*5	650*5	650*5	650*5	650*5
200	Heat Dimensions (mm) W×H×D					580×1700×850					1050×1900×800	1050×1900×800	1200×1950×1400	1200×1950×1400
	Exchanger Mass (kg)	400	400	400	400	400	400	400	400	400	600	600	950	950

^{**1} Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requ

**2 Power supply: 3-phase 380/400/415/440 V, 50/60 Hz. A transformer is required for other supply voltages. **3 If the tests (Sweep or Spot) inclu

**4 Breaker capacity for 400 V ** 5 Bypass circuit is needed. Please contact IMV or your local distributor for further information.

**6 An export license is required for exporting the shaker system of over 50 kN sine force.

**HAG" type is scheduled to be released in April, 2022. **HAM" or **AM" type will be applied until then.

The specification shows the maximum system performance. For long-duration tests, system must be de-rated up to 70%. Continuous use at maximum levels may cause failure. Please contact IMV if your system operates at more than 70%.

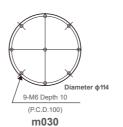
For random vibration tests, please set the test definition of the peak value of acceleration waveform to operate at less than the maximum acceleration of shock Frequency range values vary according to the sensor and vibration controller. Armature mass and acceleration may change when a chamber is added. Hydraulic unit for lower hydraulic bearing is attached for K200 and K350. Please contact IMV or your local distributor for further information.

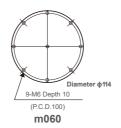
M-series

Low Acoustic Noise and Compact Range

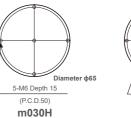
Silent model suitable for abnormal noise inspection

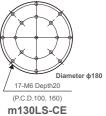
Compact and silent design, but also powerful enough for full-scale tests.


[Silent design employing a built-in cooling fan]


DC-powered cooling fan is built into the shaker. Natural air-cooling is also used when the cooling fan is stopped for silent operation (with a reduction in performance).

■ Specifications


	System N	Model	m030/MA1-CE	m060/MA1-CE	m120/MA1-CE	m030H/MA1	m130LS/MA1-CE
	Frequen	cy Range (Hz)	0-3000	0-3000	0-2000	1000-10000	2 –1000
		Sine (N)	300	600	1200	380	1300
	Rated force	Random (N rms)	210	420	840	266	650
		Shock (N)	300	600	1200	380	1300
		No Load (m/s²)	500	500	500	200	130
System Specifications	Maximum Acc.	0.5kg Load (m/s²)	272	352	413	158	123
		1.0kg Load (m/s²)	187	272	352	131	118
	Maximum	Velocity (m/s)	1.6	1.6	1.6	- *1	1.0
	Maximum [Displacement (mmp-p)	26	30	30	— *1	51
	Maximum	Load (kg)	15	15	120	15	100
	Power Re	quirements (kVA)*2	0.4	0.7	1.1	0.5	1.0
			m030-CE	m060-CE	m120-CE		m130LS-CE
	Armature	Support Method	Diaphragm spring	Diaphragm spring	Air Suspension	Rubber spring	Air Suspension
Vibration	Armature	Mass (kg)	0.6	1.2	2.4	1.9	10
Generator	Armature	Diameter (φmm)	114	114	174	65	180
	Dimensio	ons (mm)	φ190 × H240	φ230 × H281	φ320 × H327*3	φ190 × H275	W410 × H592 × D46
	Mass (kg)	22	40	110	30	250
			MA1-CE	MA1-CE	MA1-CE	MA1-CE	MA1-CE
	Maximum	Output (kVA)	1.0	1.0	1.0	1.0	1.0
Power Amplifier	Dimensio	ons (mm) W×H×D	430 × 149 × 430	430 × 149 × 430	430 × 149 × 430	430 × 149 × 430	430 × 149 × 430
,	Mass (kg	1)	25	25	25	25	25
	Cooling I	Method			Air cooling		
Cooling	Blower			ŀ	Housed in vibration generator		


■ Table Insert Pattern(Unit: mm)

Accessories

A pair of carrying handles

Easily carried safely by one or two operators.

*Removable m030 and m060 only

Air pump

The vibration table height is adjusted to compensate for payload weight using an air pump.

Option

Head expander

Model	Dimensions (mm)					m120
TBV-125- □-A	125 × 125 × t 20	0.9	2000	0	0	
TBV-200- □-A	200 × 200 × t 20	2.5	1500	0*	0	0
TBV-315- □-A	315 × 315 × t 30	8.5	1000		0*	0
TBV-400- □-A	400 × 400 × t 35	14.4	600			0

"-A" at the end of model number shows that material is aluminum alloy. Add the vibration generator type where " \square " is shown.

*Asupplementary guidance system using linear bearings is used with the vibration generator when combined with the head expander.

Armature mass is increased due to the addition of the guide support.

guidance system

Head expander

Slip table

Slip table

Model	Dimensions	Maximum frequency				
Model						m130L8
TBH-200	200 × 200	500	4	4	5.5	-
TBH-315	315 × 315	500	7.5	7.5	9	-
TBH-400	400 × 400	500	-	12.3	14	-
TRU 500	500 × 500	500				28

^{*}The material of slip plate is aluminum alloy.

Excitation at any selected point

Excitation at body

Emergency stop switch

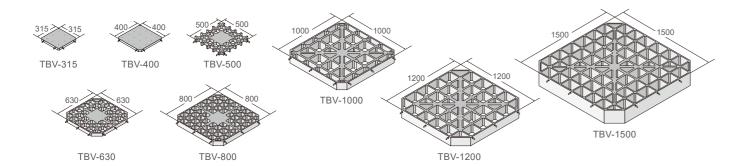
Excitation at drive shaft

Modal analysis can be done by applying vibration to the car body, etc.

Moving device

It is possible to stop the system in an

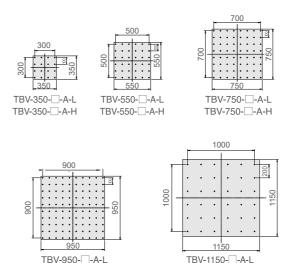
Eliminates the hassle of moving the machine and enables tests to be performed in any available space.


^{*2} Power supply: single-phase AC100 V/200 V or AC110 V/220 V or AC120 V/240 V ±10% 50/60 Hz. A transformer is required for other supply voltages
*3 Insulation pad (W410 x H45 x D410 mm) is standard equipment.

^{*}The specification shows the maximum system performance. For long-duration tests, system must be de-rated up to 70%. Continuous use at maximum levels may cause failure. Please contact IMV if your system operates at more than 70%. *Frequency range values vary according to the sensor and vibration controller.

Head expanders and cubic fixtures

Head expanders


Where the size of the specimen exceeds the dimensions of the armature a head expander should be used. Generally, the maximum usable frequency is reduced as the size of specimen increases. The head expander should be selected based on specimen size and maximum test frequency required. Properties of the standard range of head expanders is shown in the table.

Madal	Dimensions	Mass	Maximum				A-	series				i-series			
Model			frequency ((Hz)		A			A45				i21		i220	
TBV-125- □-A	125 × 125	0.9	0000	-		-	-	-		-	-	C		-	
TBV-125- □-M	t 20	0.6	2000	-		-	-	-		-	-	C		-	
TBV-315- □-A	315 × 315	8.5	4000	0		0	0	-		-	-	C)	0	
TBV-315- □-M	t 30	5.8	1000	0		0	0	-		-	-	C)	0	
TBV-400- □-A	400 × 400	13	600	0		0	0	-		-	-	С)	0	
TBV-400- □-M	t 30	9	600	0		0	0	-		-	-	C)	0	
TBV-500- □-A	500 × 500	15	500	0		0	0	0		0	0	C)	0	
TBV-500- □-M	t 40	10.4	300	0		0	0	0		0	0	C		0	
TBV-630- □-A	630 × 630	19	360	0		0	0	0		0	0	C		0	
TBV-630- □-M	t 45	12.5	300	0		0	0	0		0	0	C		0	
TBV-800- □-A	800 × 800	45	350	0		0	0	0		0	0	-		0	
TBV-800- □-M	t 70	30	330	0		0	0	0		0	0	-		0	
TBV-1000-□-A	1000 × 1000	110	350	0		0	0	0		0	0	-		-	
TBV-1000-□-M	t 110	78	330	0		0	0	0		0	0	-		-	
TBV-1200-□-A	1200 × 1200 t 125	180	200	- 0		0	0		0	0	-		-		
TBV-1500-□-A	1500 × 1500 t 200	300	200	-			-	0		0	0	-		-	
Model		Mass (kg)	Maximum frequency (Hz)	J230	J-se J240	J250	J260	K030	K060		K-series K125	K125LS	K200	K350	
TBV-125-□-A	125×125	0.9	(' '-'	-	-	-	-	-	-	-	-	-	-	-	
TBV-125- □ -M	t 20	0.6	2000	-	_	_	_	_	_	_	_	-	-	_	
TBV-315-□-A	315×315	8.5		0	0	-	-	_	_	_	-	-	_	-	
TBV-315-□-M	t 30	5.8	1000	0	0	-	-	-	-	-	-	-	-	-	
TBV-400- □ -A	400×400	13		0	0	-	-	0	-	-	-	-	-	-	
TBV-400- □ -M	t 30	9	600	0	0	-	-	0	-	-	-	-	-	-	
TBV-500-□-A	500×500	15	500	0	0	0	0	0	0	0	-	-	-	-	
TBV-500- □ -M	t 40	10.4	500	0	0	0	0	0	0	0	-	-	-	-	
TBV-630-□-A	630×630	19	000	0	0	0	0	0	0	0	0	0	-	-	
TBV-630-□-M	t 45	12.5	360	0	0	0	0	0	0	0	0	0	-	-	
TBV-800-□-A	800×800	45	050	0	0	0	0	0	0	0	0	0	0	0	
TBV-800-□-M	t 70	30	350	0	0	0	0	0	0	0	0	0	0	0	
TBV-1000-□-A	1000×1000	110	250	0	0	0	0	0	0	0	0	0	0	0	
TBV-1000- □-M	t 110	78	350	0	0	0	0	0	0	0	0	0	0	0	
TBV-1200-□-A	1200 × 1200 t 125	180	200	-	0	0	0	0	0	0	0	0	0	0	
TBV-1500- □-A	1500 × 1500 t 200	300	200	-	-	0	0	0	0	0	0	0	0	0	

Model names ending with "A" indicate aluminum body and "M" indicate magnesium alloy. Add the vibration generator type where "

Head expander (flat surface type)

		- 64		7	
Model	Dimensions (mm)	Mass (kg)	Maximum frequency (Hz)	Specimen mounting screw	Screw pitch
TBV-350-□-A-L	350×350×t 33	6	750	M10 Depth25	□100mmPitch
TBV-350-□-A-H	350×350×t 65	11	1500	M10 Depth25	□100mmPitch
TBV-550-□-A-L	550×550×t 30	17	300	M10 Depth25	□100mmPitch
TBV-550-□-A-H	550×550×t 60	30	600	M10 Depth25	□100mmPitch
TBV-750-□-A-L	750×750×t 38	30	200	M10 Depth25	□100mmPitch
TBV-750-□-A-H	750×750×t 75	55	400	M10 Depth25	□100mmPitch
TBV-950-□-A-L	950×950×t 45	45	150	M10 Depth25	□100mmPitch
TBV-950-□-A-H	950×950×t 90	80	300	M10 Depth25	□100mmPitch
TBV-1150- □-A-L	1150×1150×t 60	90	120	M10 Depth25	□200mmPitch
TBV-1150- □-A-H	1150×1150×t 120	160	240	M10 Depth25	□200mmPitch

Model names ending with "A" indicate aluminum body. Add the vibration generator type where "□" is shown. Please contact us for more information.

■ Options for use with vertical tables

Guide system, additional air spring

The following option increases the allowable overturning moment of the head expander.

TBV-950- -A-I

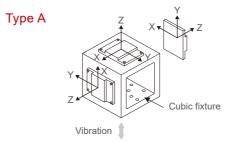
TBV-950-□-A-H

- Additional guide system Enabling larger or off-centre specimens to be tested.
- Additional air spring Providing additional load support to accommodate higher specimen & fixture mass.

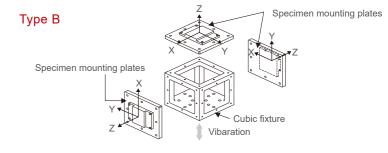
*Some models do not support the options above

TBV-1150-□-A-H

Vibration generator


High-frequency model

A head-expander having exceptionally low mass and special dual conical shape giving excellent damping.



Cubic fixture

The specimen can be fastened to the top or the side face of the cubic fixture where testing in each axis is required. Two types of cubic fixture are available. Type A has fixing holes on each face, Type B has specimen mounting plates which attach to the cubic frame.

	Cubic fixtu	re (Type A)			
Model	Dimensions (mm)	Mass (kg)	Maximum frequency (Hz)		
TCJ-A150- □-A	150×150×150	5.5	2000		
TCJ-A150- □-M	150 ~ 150 ~ 150	4	2000		
TCJ-A160- □-A	160×160×160	6.5	2000		
TCJ-A160- □-M	160 ~ 160 ~ 160	4.6	2000		
TCJ-A200- □-A	200×200×200	8	1000		
TCJ-A200- □-M	200^200^200	5.6	1000		
TCJ-A250- □-A	250×250×250	13.5	650		
TCJ-A250- □-M	250^250^250	9.5	050		
TCJ-A300- □-A	300×300×300	20	400		
TCJ-A300- □-M	300~300~300	14	400		

	Cubic fixtu	re (Type B)			ounting plates
Model	Dimensions (mm)	Mass (kg)	Maximum frequency (Hz)	Model	Mass (kg)
TCJ-B150-□-A	150×150×150	3.5	2000	TCJ-B150-P-A	1.5
TCJ-B150-□-M	150^150^150	2.5	2000	TCJ-B150-P-M	1.1
TCJ-B160-□-A	160×160×160	4	2000	TCJ-B160-P-A	1.7
TCJ-B160-□-M	100~100~100	2.8	2000	TCJ-B160-P-M	1.3
TCJ-B200-□-A	200×200×200	10	2000	TCJ-B200-P-A	3.5
TCJ-B200-□-M	200^200^200	7	2000	TCJ-B200-P-M	2.5
TCJ-B250-□-A	250×250×250	20	1000	TCJ-B250-P-A	4.5
TCJ-B250-□-M	230^230^230	14	1000	TCJ-B250-P-M	3.2
TCJ-B300-□-A	300×300×300	20	600	TCJ-B300-P-A	6.5
TCJ-B300- □-M	300^300^300	14	600	TCJ-B300-P-M	4.5

Model names ending with "A" indicate aluminum body and "M" indicate magnesium alloy. Add the vibration generator type where "

^{*}The data shown refers to the IMV standard range. Custom designs can also be supplied.

Slip table

A slip table is required for testing a specimen along its horizontal axis, or when a heavy specimen is to be tested. Slip tables are designed to achieve low friction in the driven axis, while supporting heavy loads and introducing minimal waveform distortion.

■ Type and features of slip table

MB: Mechanical Bearing

Mechanical bearing employs the linear motion guide which incorporates a component with a linear rolling motion into practical use. It significantly contributes to high performance of table which are high-rigidity, high load and long stroke motion. Another strong feature of the mechanical bearing is easy to operate. Since it is light weighted and no need for a hydraulic unit.

	TBH-550-□-A-MB								
Moment (N⋅m)		9300							
Maximum Load (kg)		1000							
Vibration Generator	Moving Mass* (kg)	Frequency (Hz)	Table Thickness (mm)						
A11	46	2000	30						
A22	47	30							

Model	ТВ	H-550-□-A-N	ИΒ	ТВ	H-750-□-A-N	ИΒ	ТВ	H-950-□-A-N	ИΒ	TBH-1150-□-A-MB			
Table Size (mm)													
Moment (N·m)		9300			12700			19700			51500		
Maximum Load (kg)		1000			2000			2000		2000			
Vibration Generator	Moving Mass* Frequency Table Thickness (kg) (Hz) (mm)		Moving Mass* (kg)			Moving Mass* (kg)	Frequency (Hz)	Table Thickness (mm)	Moving Mass* (kg)	Frequency (Hz)	Table Thickness (mm)		
A30	47	2000		75	2000		106	0000		151	2222		
A45	54	54 2000 30		87		30	114	2000	30	160	2000	40	
A65/A74	J -	2000*1		01	2000*1		114	2000*1		100	2000*1	1	

^{*1} Above 1600 Hz, the force rolls-off at a rate of -6db/oct.

ST: Oil Film Type

It is supported on oil film. Constantly create oil film at reverse side of the table letting the table slide with low friction. Pump oil unit is located in the slip table base. Since moving mass is small, it becomes one of the most standard slip table with substantial sales record.

Model			ST		BH-630-□-A-5	ST		BH-800-□-A-	ST			ST			
Table Size (mm)															
Pitch Moment (N·m)		200			400			800			1300				
Maximum Load (kg)		200		300				400		500					
Vibration Generator	Moving Mass* (kg)	Frequency (Hz)	Thickness (mm)												
i210		2500					-	-	-	-	-	-			
i220	33	2500	30	45		30	65		30	100		30			
K030		2000			2000		05	2000		100	1250	30			
K060	60	2000	50	80		50	115	50		170	1250	50			
K080	-	-	_	80	80	80	80	50		115		30	170		50

^{*}The material of slip plate is aluminum alloy. It is possible to change to magnesium. Please contact us for more information.

TT-L: Hydrostatic Bearing (Low Pressure)/TT-H: Hydrostatic Bearing (High Pressure)

Locating multiple hydrostatic bearing on high rigid base to support slip table. Special purpose designed hydrostatic bearing realizes high load and allowable eccentric moment.

TT-L: Hydrostatic Bearing (Low Pressure)

Model	TBH-	500-□-/	A-TTL	TBH-6	30-□-/	A-TTL	TBH-8	300-□-	A-TTL	TBH-1	000-□-	A-TTL	TBH-1	200-□-	-A-TTL	TBH-1	500-□-	A-TTL	TBH-1	800-□-	A-TTL	TBH-2000-□-A-TTL		-A-TTL
Table Size (mm)					30 × 63																			00
Pitch Moment (N · m)		1100			1100			2200			2200			4600			6500			10000			10000	
Maximum Load (kg)		700			1000			1000		1500		2000		2000			2500				2500			
Vibration Generator	Moving Mass* (kg)	Frequency (Hz)	Thickness (mm)																					
i210	40	2000		53	2000		75	1600		105														
i220	43	2000	30	55	2000	30	78	1000	30	108		30												
J230	50		30	63		30	85			118			280	900	50	450	800	50	650	600	50	800	500	50
J240	30	1600		03	1600		00	1250		110	1000		200	300	30	430	000	30	030	000	30	000	300	30
J250	70	1000	40	85	1000	40	115	1230	40	155		40												
J260	'0		40	05		40	113		40	133		0												

^{*}The material of slip plate is aluminum alloy. It is possible to change to magnesium. Please contact us for more information. * is the model number of the vibration generator.

Model	TBH-	550-□-	A-TTL	TBH-7	750-□-/	A-TTL	TBH-950-□-A-TTL				
Table Size (mm)											
Pitch Moment (N·m)		1100			2200		2200				
Maximum Load (kg)		1000			1500		1500				
Vibration Generator	Moving Mass* (kg)	Frequency (Hz)	Thickness (mm)	Moving Mass* (kg)	Frequency (Hz)	Thickness (mm)	Moving Mass* (kg)	Frequency (Hz)	Thickness (mm)		
A11	52										
A22	F-2			-	-	-	-	-	-		
A30	53 2000		30	78			105				
A45	0.4			89	1600	30	115	1000	30		
A65/A74	64 2000*			09			110				

^{*}Above 1600 Hz, the force rolls-off at a rate of -6db/oct $^*\Box$ is the model number of the vibration generator.

TT-H: Hydrostatic Bearing (High Pressure)

Model	TBH-5	500-□-	A-TTH	TBH-6	30-□-	A-TTH	TBH-8	800-□-	A-TTH	TBH-1	000-□-	A-TTH	TBH-1	200-□-	A-TTH	TBH-1	500-□-	A-TTH	TBH-1	800-□-	A-TTH	TBH-2	000-□-	A-TTH
Table Size (mm)					30 × 63									00 × 12									00 × 20	00
Pitch Moment (N · m)		4000			4000			7700			7700			16000			22000			48000			48000	
Maximum Load (kg)		800			1200			1600			2000			2000			2000			3000			3000	
Vibration Generator	Moving Mass* (kg)	Frequency (Hz)	Thickness (mm)	Moving Mass* (kg)	Frequency (Hz)	Thickness (mm)																		
i210	60	2000		70	2000		115	2000		165	1250													
i220	63	2000		83	2000		118	2000		168	1230													
J230	68			88			125			175														
J240	70	1600		90	1600		130	1250		178	1000													
J250 J260	83		50	100		- 50	143	1230	50	188	1000	50	280	900	50	450	800	50	650	600	50	800	500	50
K030	68		30	88		50	123		50	173														
K060	93	2000		108	2000		145	2000		193	1250													
K080	78	2000		95	2000		133	2000		180	1250													
K125	103			118			155			205														
K125LS	113	1600		128	1600		170	1250		220	1000													

^{*}The material of slip plate is aluminum alloy. It is possible to change to magnesium. Please contact us for more information. * is the model number of the vibration generator.

Model	TBH-5	550-□-/	A-TTH	TBH-7	'50-□-	A-TTH	TBH-9	950-□-	A-TTH	
Table Size (mm)		550 × 550								
Pitch Moment (N · m)		4000			7700		7700			
Maximum Load (kg)		1200			2000			2000		
Vibration Generator	Moving Mass* (kg)	Moving Mass* Frequency Thickness			oving Mass* Frequency Thickness Moving Ma (kg) (Hz) (mm) (kg)			Frequency (Hz)	Thickness (mm)	
A11	52									
A22	53			_	_	_	_	-	-	
A30	55	2000	30	78			105			
A45				89	1600	30	115	1000	30	
A65/A74	66 2000*			09			113			

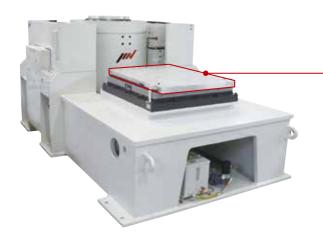
^{*}Above 1600 Hz, the force rolls-off at a rate of -6db/oct.

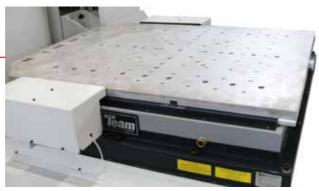
^{*}The weight is referring the plate made of aluminum.

^{*□} is the model number of the vibration generator.
*Please contact us about the table size over 1150 × 1300.

^{*□} is the model number of the vibration generator.

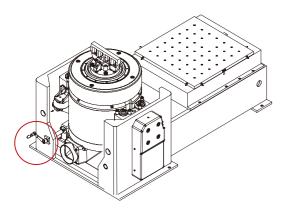
Slip tab


■T-Film bearing range


The T-Film bearing from Team Corporation is probably the most advanced design of linear bearing available to the vibration test industry.

The slip table employs a number of bearings, each consisting of a U.S. patented bearing element and hydro static oil film.

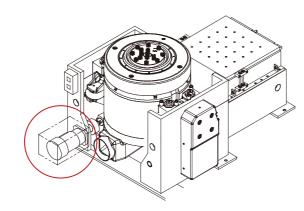
T-Film bearings provide excellent vibration waveform linearity and are considered to be the best solution for the aerospace industry and research establishments.



Option for slip table

Rotation reduction gearing

A reduction gearing unit enabling easier reconfiguration of the vibration generator.


*i210 doesn't have this option

Motor drive rotation

Powered rotation of the vibration generator.

The motor-driven rotation can be optionally installed on systems equipped with reduction gearing.

HBT (High Pressure Slip Tables)

This concept combines a standard oil-film slip table assembly with 3,000-psi hydrostatic bearings to provide high dynamic moment restraint while preserving the damping characteristics of an oil film.

■ Features

- Light Weight Magnesium slip plate as standard
- Precision ground granite base provides a low friction surface and high damping.
- Hydrostatic bearings offer high Pitch, Roll and Yaw moments.
- Low cross axis performance

■ Options Include

Gun drilled slip plate for testing with Climatic Chamber, Clean Room option for Space applications

Specification

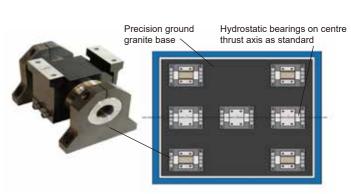
	HBT600	HBT700	HBT900	HBT1000	HBT1200 7bgs	HBT1500 7bgs
Maximum Payload (kg)	5000	5750	7250	8000	10000	12000
Slip Plate Working Surface - square (mm)	600	700	900	1000	1200	1500
Slip Plate Material	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium
Slip Plate Thickness (mm)	50	50	50	50	50	50
Slip Plate Grid Pattern (mm)	100 mm Grid	100 mm Grid	100 mm Grid	100 mm Grid	100 mm Grid	100 mm Grid
Slip Plate Mass (kg)	37	50	84	96	140	224
Number of Hydrostatic Bearings	2	2	2	2	7	7
Mass per Hydrostatic Bearings (kg)	5	5	5	5	5	5
Driver Bar Weight including Bolts			Please refer to	the table below		
Overturning Moment Pitch (kNm)	23.6	31.0	50.3	62.8	201.2	296.6
Overturning Moment Roll (kNm)	24.7	30.7	45.7	54.8	156.5	221.8
Overturning Moment Yaw(kNm)	19.0	23.6	34.7	41.4	54.7	74.7

■ Driver Bar Weights

Vibratorion Generator Model	A20, A30, J240	A45, A74, J250, J60, K060, K080	K100LS, K125LS	K200
Driver Bar Weight including Bolts (kg)	7	17.5	31	37.5
Driver Bar to fit Armature Diameter (mm)	290	446	560	650
Insert Thread Size	M10	M10	M16	M16

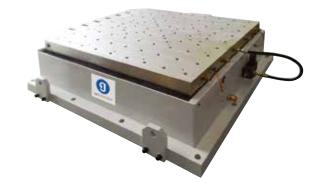
Special Solutions

1. Multi Bearing Configuration


The HBT tables can be design to meet customer requirements. Adding additional bearing to increase the load capacity and overturning moment performance of the slip table.

2. HBT Interchangeable Slip Plates

The interchangeable slip plates solution allows the Customer to adapt the size and moving mass of the table to match the size of the payload. This allows the optimisation of the used force and energy consumption. The interchangeable HBT slip table allows the Customer to have 2 shakers in 1.


■ Features

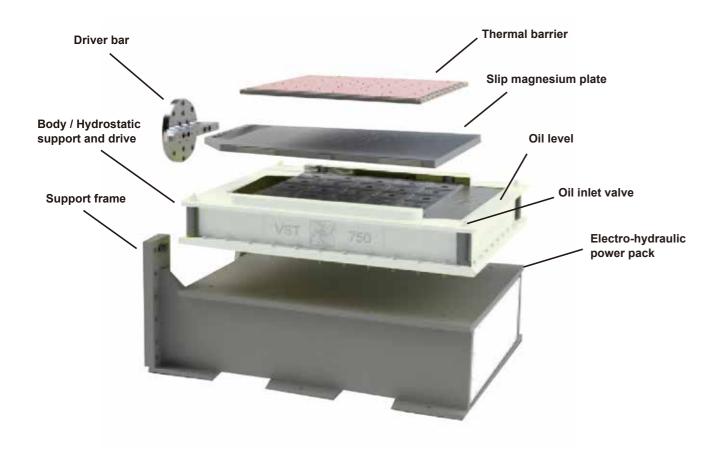
- Dual Magnesium Interchangeable Plates
- Multi bearing configuration
- Removable bearing and granite block protective covers
- Quick and easy plate change.

Additional hydrostatic bearings

Additional hydrostatic journal bearings either side of the centre thrust axis can be installed to increase overturning restraint. These additional bearings are so designed to allow for thermal expansion of the slip plate (2 degrees of freedom).

Slip tabl

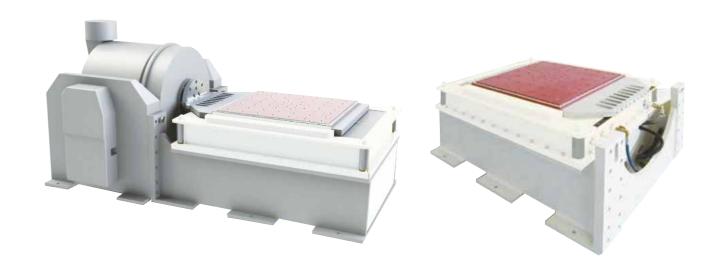
VST(Vacuum Slip Table)


New concept slip table guided by balancing oil pressure and vacuum force.

■ Features

- Long stroke up to 160 mm
- Interchangeable table fits customer needs (option)
- High damping ratio
- High moments
- Minimum alignment operation
- Low maintenance

■ VST in details



■ Specification

VST (Vacuum Slip Table)

Table Siz	е	600 x 600	750 x 750	900 x 900	1050 x 1050	1200 x 1200	1500 x 1500
Weight (kg)	Magnesium	35	50	67	88	111	167
	Pitch	7.7	15	25.9	41.2	61.4	120
Magazanta (IAIar)	Roll	7.7	15	25.9	41.2	61.4	120
Moments (kNm)	Yaw Continuous	2.8	3.7	4.7	5.6	6.5	8.4
	Yaw Ultimate	23.4	31.2	39	46.8	54.6	70.2
Maximum Displacement (mm)		160	160	160	160	160	160
Maximum Payload (kg)		640	1000	1450	1950	2550	4000
Maximum Frequency (Hz)		2000	2000	2000	2000	2000	2000
First Resonance (Hz)		1250	1050	950	830	730	600
Standard Insert Pattern	100 mm Grid	36	64	81	121	144	225
Driver Bar Weight (kg) *	Aluminium	15	15	15	15	15	15

* TBC according to the armature

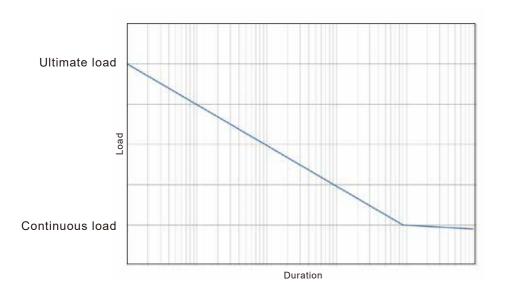
[Basic Systems] Vibration Test Systems

RT(Rail Table)

The main innovation consists in the use of recirculating balls guideways and a particular damping technology based on the "constrained layer" principle.

The innovative system is characterized by high reliability and excellent performances, the result of a long direct field experience.

■ Features

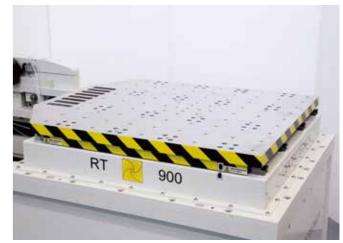

- Easily to use
- Robust and longlasting
- No oil
- Easily to repair and maintain

- No compressed air
 Oxidation resistance
- Long stroke

■ Bearing lasting time

The high technical level of the Rail Table led to an extension of the working time between each maintenance. Before the test start, the customer could easily calculate the table bearable test load and, by comparing the "continuous" and "ultimate" load values, asses the wear level which the test will cause to the table and consequently the economic impact of the maintenance.

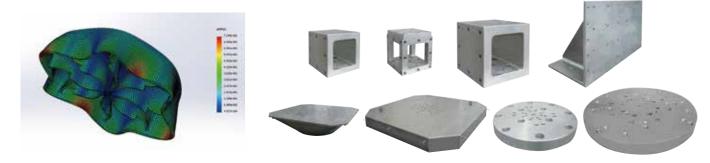
Important: the maintenance is a very simple operation since it consists in the mere substitution of the bearings.


Specification

RT (Rail Table)

Table Si	ze	450 × 450	600 × 600	750 × 750	900 × 900	1050 × 1050	1200 × 1200	1500 × 1500
Weight (kg)	Aluminium	30	50	68	96	125	160	230
weight (kg)	Magnesium	23	40	53	75	98	125	175
	Pitch Continuous	6.3	16.9	24.3	56.4	69.6	82.8	122.9
	Pitch Ultimate	15.7	42.25	60.75	141	174	207	307.25
Manager (IA)	Roll Continuous	9.7	24.8	29.7	70.3	71.6	89.9	144.1
Moments (kNm)	Roll Ultimate	24.5	62	74.25	175.75	179	224.75	360.25
	Yaw Continuous	6.3	16.9	24.3	56.4	69.6	82.8	122.9
	Yaw Ultimate	15.7	42.25	60.75	141	174	207	307.25
Maximum Displacement (mm)		160	160	160	160	160	160	160
Maximum Payload (ton)		3.3	7.4	7.4	13.2	13.2	13.2	16.5
Maximum Frequency (Hz)		2000	2000	2000	2000	2000	2000	2000
First Resonance (Hz)		1400	1250	1050	950	830	750	700
Standard Insert Pattern	100 mm Grid	25	36	64	81	121	121	225
Driver Bar Weight (kg) *	Aluminium	15	15	15	15	15	15	15
Mass of Thermal Barrier (kg)		9	13.7	24	31	42	55	85.5

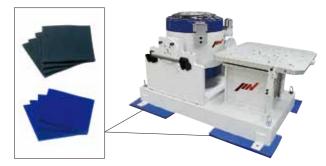
* TBC according to the armature



Fixture, Vibration Isolation, Reinforcement

Fixture

IMV has a range of fixtures, such as cube- and 'L'-shaped types, to suit most applications. Custom fixtures are supplied, designed and analysed using finite-element modeling to ensure best performance.



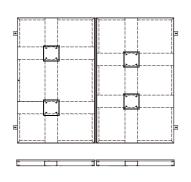
Vibration Isolation

Additional isolation mounts are available to reduce the effects of vibration on the floor and adjacent equipment.

■Insulation pad

These are simple to install by placing under the vibration generator.

■ Air spring


Air springs placed under each corner of the frame support the vibration generator and are an excellent way to isolate vibration

Reinforcement

■ Load-spreader base

The weight of the vibration generator can be distributed over a larger area where the maximum allowable floor loading is

Optional Units

Soundproof enclosure, cooling ducting

Soundproof enclosure

A soundproof enclosure for the cooling blower reduces noise in installations where the blower cannot be located outside the work area.

inside

Cooling ducting

The standard arrangement for air-cooled systems is to install the blower outside the work area. Ducting the input air from outside eliminates the changes in ambient pressure and temperature caused by the cooling air flow.

[Multi-axis systems] Vibration Test Systems

DC-series

2-Axis Changeover Systems

■ Specifications

-												
			DC-1000-4H	DC-1000-6H	DC-1000-8H	DC-1000-10M	DC-2000-5H	DC-2000-8M	DC-2000-10M	DC-2000-15M	DC-3000-5H	DC-3000-8M
	Table S	Size (mm)	□400	□600	□800	□1000	□500	□800	□1000	□1500	□500	□800
	Detect	Sine (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Rated Force	Random (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
		Shock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Maximu	m Acceleration (m/s²)	108	75	54	32	150	81	67	28	196	140
System	Maximu	ım Velocity (m/s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Specifications	Maximum	n Displacement (mmp-p)	51	51	51	51	51	51	51	51	51	51
	Armatur	re Mass (kg)	90	130	180	300	130	240	290	680	150	210
		Horizontal (Hz)	1000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1000	1000	700	500	800	800	500	350	800	800
	Maximu	im Load (kg)	100	100	200	200	200	300	500	500	200	300
	Power F	Requirements (kVA)	25	25	25	25	43	43	43	43	52	52
	Primary	Cooling Water (ℓ /min)	_	_	_	_	_	_	_	_	_	_
	Custom	Madal	DC 2000 10M	DC 2000 15M	DC 5000 6H	DC 5000 9H	DC 5000 10M	DC 5000 15M	DC 6000 6H	DC 6000 9H	DC 6000 10M	DC 6000 15M
	System		DC-3000-10M	DC-3000-15M	DC-5000-6H	DC-5000-8H	DC-5000-10M		DC-6000-6H	DC-6000-8H	DC-6000-10M	DC-6000-15M
		ize (mm)	□1000	□1500	□600	□800	□1000	□1500	□600	□800	□1000	□1500
		Sine (kN)	1000 29.4	1500 29.4	□600 49	□800 49	□1000 49	□1500 49	□600 61.7	□800 61.7	□1000 61.7	1500 61.7
	Table S	Sine (kN) Random (kN)	□1000 29.4 14.7	□1500 29.4 14.7	□600 49 29.4	□800 49 29.4	□1000 49 24.5	□1500 49 24.5	□600 61.7 37	□800 61.7 37	□1000 61.7 30.8	□1500 61.7 30.8
	Table S Rated Force	Sine (kN) Random (kN) Shock (kN)	1000 29.4 14.7 44.1	□1500 29.4 14.7 44.1	□600 49 29.4 73.5	800 49 29.4 73.5	□1000 49 24.5 58.8	□1500 49 24.5 58.8	□600 61.7 37 92.5	800 61.7 37 92.5	□1000 61.7 30.8 74	□1500 61.7 30.8 74
	Rated Force	Sine (kN) Random (kN) Shock (kN) M Acceleration (m/s²)	□1000 29.4 14.7 44.1 91	□1500 29.4 14.7 44.1 47	□600 49 29.4 73.5 350	□800 49 29.4 73.5 204	□1000 49 24.5 58.8 163	□1500 49 24.5 58.8 59	□600 61.7 37 92.5 385	□800 61.7 37 92.5 268	□1000 61.7 30.8 74 102	□1500 61.7 30.8 74 75
System	Rated Force Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s)	□1000 29.4 14.7 44.1 91 1.0	□1500 29.4 14.7 44.1 47 0.9	□600 49 29.4 73.5 350 1.0	□800 49 29.4 73.5 204 1.0	□1000 49 24.5 58.8 163 0.9	□1500 49 24.5 58.8 59 0.9	□600 61.7 37 92.5 385 1.0	□800 61.7 37 92.5 268 1.0	□1000 61.7 30.8 74 102 0.9	□1500 61.7 30.8 74 75 0.9
	Rated Force Maximum Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) n Displacement (mmp-p)	□1000 29.4 14.7 44.1 91 1.0 51	□1500 29.4 14.7 44.1 47 0.9 51	1600 49 29.4 73.5 350 1.0	□800 49 29.4 73.5 204 1.0 51	□1000 49 24.5 58.8 163 0.9 51	□1500 49 24.5 58.8 59 0.9 51	□600 61.7 37 92.5 385 1.0 51	□800 61.7 37 92.5 268 1.0 51	□1000 61.7 30.8 74 102 0.9 51	□1500 61.7 30.8 74 75 0.9 51
	Rated Force Maximum Maximum Armatur	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) n Displacement (mmp-p) re Mass (kg)	□1000 29.4 14.7 44.1 91 1.0 51 320	□1500 29.4 14.7 44.1 47 0.9 51 620	1600 49 29.4 73.5 350 1.0 51	☐800 49 29.4 73.5 204 1.0 51 240	□1000 49 24.5 58.8 163 0.9 51 300	□1500 49 24.5 58.8 59 0.9 51 820	□600 61.7 37 92.5 385 1.0 51	□800 61.7 37 92.5 268 1.0 51	□1000 61.7 30.8 74 102 0.9 51 600	□1500 61.7 30.8 74 75 0.9 51 820
	Rated Force Maximum Maximum Armatum Maximum Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) n Displacement (mmp-p) re Mass (kg) Horizontal (Hz)	1000 29.4 14.7 44.1 91 1.0 51 320 350	□1500 29.4 14.7 44.1 47 0.9 51 620 250	73.5 350 1.0 51 140	☐800 49 29.4 73.5 204 1.0 51 240	1000 49 24.5 58.8 163 0.9 51 300 350	1500 49 24.5 58.8 59 0.9 51 820 250	□600 61.7 37 92.5 385 1.0 51 160 800	□800 61.7 37 92.5 268 1.0 51 230 700	1000 61.7 30.8 74 102 0.9 51 600 350	1500 61.7 30.8 74 75 0.9 51 820 250
	Rated Force Maximum Maximum Armatur Maximum Frequency	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) n Displacement (mmp-p) re Mass (kg) Horizontal (Hz) Vertical(Hz)	1000 29.4 14.7 44.1 91 1.0 51 320 350 500	□1500 29.4 14.7 44.1 47 0.9 51 620 250 350	☐600 49 29.4 73.5 350 1.0 51 140 800 1000	□800 49 29.4 73.5 204 1.0 51 240 700 800	1000 49 24.5 58.8 163 0.9 51 300 350	1500 49 24.5 58.8 59 0.9 51 820 250 350	□600 61.7 37 92.5 385 1.0 51 160 800 1000	□800 61.7 37 92.5 268 1.0 51 230 700 800	1000 61.7 30.8 74 102 0.9 51 600 350	1500 61.7 30.8 74 75 0.9 51 820 250 350
	Rated Force Maximum Maximum Armatur Maximum Frequency Maximum Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) n Displacement (mmp-p) re Mass (kg) Horizontal (Hz) Vertical(Hz) um Load (kg)	1000 29.4 14.7 44.1 91 1.0 51 320 350 500	□1500 29.4 14.7 44.1 47 0.9 51 620 250 350 500	☐600 49 29.4 73.5 350 1.0 51 140 800 1000 300	□800 49 29.4 73.5 204 1.0 51 240 700 800 300	1000 49 24.5 58.8 163 0.9 51 300 350 500	□1500 49 24.5 58.8 59 0.9 51 820 250 350 700	☐600 61.7 37 92.5 385 1.0 51 160 800 1000 300	□800 61.7 37 92.5 268 1.0 51 230 700 800 300	1000 61.7 30.8 74 102 0.9 51 600 350 500	1500 61.7 30.8 74 75 0.9 51 820 250 350 700
	Rated Force Maximum Maximum Armatur Maximum Frequency Maximum Power F	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) n Displacement (mmp-p) re Mass (kg) Horizontal (Hz) Vertical(Hz)	1000 29.4 14.7 44.1 91 1.0 51 320 350 500	□1500 29.4 14.7 44.1 47 0.9 51 620 250 350	☐600 49 29.4 73.5 350 1.0 51 140 800 1000	□800 49 29.4 73.5 204 1.0 51 240 700 800	1000 49 24.5 58.8 163 0.9 51 300 350	1500 49 24.5 58.8 59 0.9 51 820 250 350	□600 61.7 37 92.5 385 1.0 51 160 800 1000	□800 61.7 37 92.5 268 1.0 51 230 700 800	1000 61.7 30.8 74 102 0.9 51 600 350	1500 61.7 30.8 74 75 0.9 51 820 250 350

ending on the reference PSD or other operating conditions such as the specimen, one part of the controlled response may deviate from the reference PSD. *The above is just an example. Specifications may be changed depending on test conditions. Please contact us for more information

(€ KK

TC-series 3-Axis Changeover Systems

■ Specifications

	Table S	ize (mm)	□400	□600	□800	1000	□500	□800	□1000	□1500	□500	□800
	Detect	Sine (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Rated Force	Random (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
		Shock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Maximu	m Acceleration (m/s²)	98	65	42	33	163	98	65	30	196	113
System	Maximu	m Velocity (m/s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Specifications	Maximum	Displacement (mmp-p)	51	51	51	51	51	51	51	51	51	51
	Armatur	e Mass (kg)	100	150	230	290	120	200	300	640	150	260
		Horizontal (Hz)	1000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1000	1000	700	500	800	800	500	350	800	800
	Maximu	m Load (kg)	100	100	200	200	200	300	500	500	200	300
	Power F	Requirements (kVA)	27	27	27	27	43	43	43	43	52	52
	Primary (Cooling Water (ℓ /min)	-	_	_	-	_	_	_	_	_	_
	0	Madal	TC-3000-10M	TC-3000-15M	TC-5000-6H	TC-5000-8H	TC-5000-10M	TC-5000-15M	TC-6000-6H	TC-6000-8H	TC-6000-10M	TC-6000-15M
	System											
	Table 5	ize (mm)	1000	□1500	□600	□800 49	1000 49	1500 49	□600	□800	1000	□1500 61.7
	Rated	Sine (kN)	29.4	29.4	49				61.7	61.7	61.7	-
	Force	Random (kN)	14.7	14.7	29.4	29.4	24.5	24.5	37	37	30.8	30.8
		Shock (kN)	44.1	44.1	73.5	73.5	58.8	58.8	92.5	92.5	74	74
		m Acceleration (m/s²)	73	43	306	222	158	67	342	257	199	84
System		m Velocity (m/s)	1.0	0.9	1.0	1.0	0.9	0.9	1.0	1.0	0.9	0.9
Specifications												
		Displacement (mmp-p)	51	51	51	51	51	51	51	51	51	51
	Armatur	e Mass (kg)	400	680	160	220	310	730	180	240	310	730
	Armatur Maximum	e Mass (kg) Horizontal (Hz)	400 350	680 250	160 800	220 700	310 350	730 250	180 800	240 700	310 350	730 250
	Armatur Maximum Frequency	e Mass (kg) Horizontal (Hz) Vertical (Hz)	400 350 500	680 250 350	160 800 1000	220 700 800	310 350 500	730 250 350	180 800 1000	240 700 800	310 350 500	730 250 350
	Armatur Maximum Frequency Maximu	e Mass (kg) Horizontal (Hz) Vertical (Hz) m Load (kg)	400 350 500 500	680 250 350 500	160 800 1000 300	220 700 800 300	310 350 500 500	730 250 350 700	180 800 1000 300	240 700 800 300	310 350 500 500	730 250 350 700
	Armatur Maximum Frequency Maximu Power F	e Mass (kg) Horizontal (Hz) Vertical (Hz)	400 350 500	680 250 350	160 800 1000	220 700 800	310 350 500	730 250 350	180 800 1000	240 700 800	310 350 500	730 250 350

ending on the reference PSD or other operating conditions such as the specimen, one part of the controlled response may deviate from the reference PSD.

*The above is just an example. Specifications may be changed depending on test conditions. Please contact us for more information

DS-series

2-Axis Simultaneous Systems

DS-2000-4H

■ Specifications

	System	Model	DS-1000-4H	DS-1000-6H	DS-1000-8H	DS-1000-10M	DS-2000-5H	DS-2000-8M	DS-2000-10M	DS-2000-15M	DS-3000-5H	DS-3000-8M
	Table S	ize (mm)	□400	□600	□800	□1000	□500	□800	□1000	□1500	□500	□800
		Sine (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Rated Force	Random (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
	1 0100	Shock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Maximu	m Acceleration (m/s²)	108	75	54	32	150	81	67	28	196	140
System	Maximu	m Velocity (m/s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Specifications	Maximum	Displacement (mmp-p)	51	51	51	51	51	51	51	51	51	51
	Armatur	e Mass (kg)	90	130	180	300	130	240	290	680	150	210
	Maximum	Horizontal (Hz)	1000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1000	1000	700	500	800	800	500	350	800	800
		m Load (kg)	100	100	200	200	200	300	500	500	200	300
	Power F	Requirements (kVA)	30	30	30	30	66	66	66	66	76	76
	Primary (Cooling Water (\ell /min)	_	_	_	_	_	_	_	_	_	_
		, ,										
	Svstem	Model	DS-3000-10M	DS-3000-15M	DS-5000-6H	DS-5000-8H	DS-5000-10M	DS-5000-15M	DS-6000-6H	DS-6000-8H	DS-6000-10M	DS-6000-15M
	System Table S	Model ize (mm)	DS-3000-10M	DS-3000-15M	DS-5000-6H	DS-5000-8H	DS-5000-10M	DS-5000-15M	DS-6000-6H	DS-6000-8H	DS-6000-10M	DS-6000-15M
	Table S											
	Table S	ize (mm)	□1000	□1500	□600	□800	□1000	□1500	□600	□800	□1000	□1500
	Table S	ize (mm) Sine (kN)	1000 29.4	□1500 29.4	□600 49	□800 49	□ 1000 49	□1500 49	□600 61.7	□800 61.7	□1000 61.7	□1500 61.7
	Table S Rated Force	ize (mm) Sine (kN) Random (kN)	□1000 29.4 14.7	□1500 29.4 14.7	□600 49 29.4	□800 49 29.4	□1000 49 24.5	□1500 49 24.5	□600 61.7 37	□800 61.7 37	□1000 61.7 30.8	□1500 61.7 30.8
Svstem	Rated Force	ize (mm) Sine (kN) Random (kN) Shock (kN)	1000 29.4 14.7 44.1	□1500 29.4 14.7 44.1	□600 49 29.4 73.5		□ 1000 49 24.5 58.8	□1500 49 24.5 58.8	□600 61.7 37 92.5	□800 61.7 37 92.5	□1000 61.7 30.8 74	□1500 61.7 30.8 74
System Specifications	Table S Rated Force Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²)	□1000 29.4 14.7 44.1 91	□1500 29.4 14.7 44.1 47	□600 49 29.4 73.5 350	□800 49 29.4 73.5 204	□ 1000 49 24.5 58.8 163	□1500 49 24.5 58.8 59	□600 61.7 37 92.5 385	□800 61.7 37 92.5 268	□1000 61.7 30.8 74 102	1500 61.7 30.8 74 75
	Rated Force Maximum Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s)	□1000 29.4 14.7 44.1 91 1.0	□1500 29.4 14.7 44.1 47 0.9	29.4 73.5 350	□800 49 29.4 73.5 204 1.0	□ 1000 49 24.5 58.8 163 0.9	□ 1500 49 24.5 58.8 59 0.9	□600 61.7 37 92.5 385 1.0	□800 61.7 37 92.5 268 1.0	□1000 61.7 30.8 74 102 0.9	1500 61.7 30.8 74 75 0.9
Specifications	Table S Rated Force Maximum Maximum Armatur Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) Displacement (mmp-p) e Mass (kg) Horizontal (Hz)	□1000 29.4 14.7 44.1 91 1.0 51	□1500 29.4 14.7 44.1 47 0.9 51	1600 49 29.4 73.5 350 1.0	□800 49 29.4 73.5 204 1.0 51	□ 1000 49 24.5 58.8 163 0.9 51	□ 1500 49 24.5 58.8 59 0.9 51	□600 61.7 37 92.5 385 1.0 51	□800 61.7 37 92.5 268 1.0 51	□1000 61.7 30.8 74 102 0.9 51	□1500 61.7 30.8 74 75 0.9 51
Specifications	Rated Force Maximum Maximum Armatur Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) Displacement (mmp-p) e Mass (kg)	□1000 29.4 14.7 44.1 91 1.0 51 320	□1500 29.4 14.7 44.1 47 0.9 51 620	1600 49 29.4 73.5 350 1.0 51	☐800 49 29.4 73.5 204 1.0 51 240	□ 1000 49 24.5 58.8 163 0.9 51 300	□ 1500 49 24.5 58.8 59 0.9 51 820	☐600 61.7 37 92.5 385 1.0 51	□800 61.7 37 92.5 268 1.0 51	□1000 61.7 30.8 74 102 0.9 51 600	□1500 61.7 30.8 74 75 0.9 51 820
Specifications	Rated Force Maximum Maximum Armatur Maximum Frequency Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) i Displacement (mmp-p) e Mass (kg) Horizontal (Hz) vertical (Hz) m Load (kg)	□1000 29.4 14.7 44.1 91 1.0 51 320 350	□1500 29.4 14.7 44.1 47 0.9 51 620 250	73.5 350 1.0 51 140	☐800 49 29.4 73.5 204 1.0 51 240	1000 49 24.5 58.8 163 0.9 51 300 350	1500 49 24.5 58.8 59 0.9 51 820 250	1000 61.7 37 92.5 385 1.0 51 160 800	□800 61.7 37 92.5 268 1.0 51 230 700	1000 61.7 30.8 74 102 0.9 51 600 350	1500 61.7 30.8 74 75 0.9 51 820 250
Specifications	Rated Force Maximum Maximum Armatur Maximum Frequency Maximum	ize (mm) Sine (kN) Random (kN) Shock (kN) m Acceleration (m/s²) m Velocity (m/s) pipplacement (mmp-p) e Mass (kg) Horizontal (Hz) Vertical (Hz)	29.4 14.7 44.1 91 1.0 51 320 350 500	□1500 29.4 14.7 44.1 47 0.9 51 620 250 350	☐600 49 29.4 73.5 350 1.0 51 140 800 1000	□800 49 29.4 73.5 204 1.0 51 240 700 800	1000 49 24.5 58.8 163 0.9 51 300 350	1500 49 24.5 58.8 59 0.9 51 820 250	□600 61.7 37 92.5 385 1.0 51 160 800 1000	□800 61.7 37 92.5 268 1.0 51 230 700 800	1000 61.7 30.8 74 102 0.9 51 600 350	1500 61.7 30.8 74 75 0.9 51 820 250 350

Depending on the reference PSD or other operating conditions such as the specimen, one part of the controlled response may deviate from the reference PSD.

(€ CK

TS-series

3-Axis Simultaneous Systems

■ Specifications

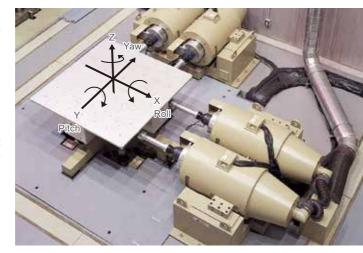
			TS-1000-4H	TS-1000-6H	TS-1000-8H		TS-2000-5H	TS-2000-8M			TS-3000-5H	TS-3000-8M
	Table S	ize (mm)	400	□600	□800	□1000	□500	□800	□1000	□1500	□500	□800
	Detect	Sine (kN)	9.8	9.8	9.8	9.8	19.6	19.6	19.6	19.6	29.4	29.4
	Rated Force	Random (kN)	4.9	4.9	4.9	4.9	9.8	9.8	9.8	9.8	14.7	14.7
		Shock (kN)	14.7	14.7	14.7	14.7	29.4	29.4	29.4	29.4	44.1	44.1
	Maximu	m Acceleration (m/s²)	98	65	42	33	163	98	65	30	196	113
System	Maximu	m Velocity (m/s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Specifications	Maximum	Displacement (mmp-p)	51	51	51	51	51	51	51	51	51	51
	Armatur	e Mass (kg)	100	150	230	290	120	200	300	640	150	260
	Maximum		1000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1000	1000	700	500	800	800	500	350	800	800
	Maximu	m Load (kg)	100	100	200	200	200	300	500	500	200	300
	Power F	Requirements (kVA)	41	41	41	41	94	94	94	94	110	110
	Primary (Cooling Water (ℓ /min)	_	_	-	_	_	_	_	_	_	_
			=	= 0.0000.1011	TO TOOL OLD	TO TOOL OLD	=0 =000 1011	=	TO 0000 011	TO 0000 011	=======================================	TO 0000 1711
	System	Model	TS-3000-10M	TS-3000-15M	TS-5000-6H	TS-5000-8H	TS-5000-10M	TS-5000-15M	TS-6000-6H	TS-6000-8H	TS-6000-10M	TS-6000-15M
	Table S	ize (mm)	□1000	□1500	□600	□800	□1000	□1500	□600	□800	□1000	□1500
		Sine (kN)	29.4	29.4	49	49	49	49	61.7	61.7	61.7	61.7

	Cystoni											10 0000 10111
	Table S	ize (mm)	□1000	□1500	□600	□800	□1000	□1500	□600	□800	□1000	□1500
		Sine (kN)	29.4	29.4	49	49	49	49	61.7	61.7	61.7	61.7
	Rated Force	Random (kN)	14.7	14.7	29.4	29.4	24.5	24.5	37	37	30.8	30.8
	. 0.00	Shock (kN)	44.1	44.1	73.5	73.5	58.8	58.8	92.5	92.5	74	74
	Maximu	m Acceleration (m/s²)	73	43	306	222	158	67	342	257	199	84
System	Maximu	m Velocity (m/s)	1.0	0.9	1.0	1.0	0.9	0.9	1.0	1.0	0.9	0.9
Specifications	Maximum	Displacement (mmp-p)	51	51	51	51	51	51	51	51	51	51
	Armatur	e Mass (kg)	400	680	160	220	310	730	180	240	310	730
		Horizontal (Hz)	350	250	800	700	350	250	800	700	350	250
	Frequency	Vertical (Hz)	500	350	1000	800	500	350	1000	800	500	350
	Maximu	m Load(kg)	500	500	300	300	500	700	300	300	500	700
	Power F	Requirements (kVA)	110	110	149	149	153	153	182	182	182	186
	Primary (Cooling Water (ℓ /min)	_	-	550	550	530	530	650	650	640	640

Depending on the reference PSD or other operating conditions such as the specimen, one part of the controlled response may deviate from the reference PSD.

TTS-series

6 Degrees of Freedom Systems



6 degrees of freedom systems

At least 6 vibration shakers are located in 3D space with integrated control and can create 6 degrees of freedom motion (3 translation degrees of freedom and 3 rotating degrees).

In addition to X, Y, Z axis motion, rotational motion, Roll, Pitch and Yaw is also possible utilising spherical bearings.

Using electro dynamic vibration generators, IMV systems can reproduce waveforms which have components in a wide frequency range with a high degree of accuracy. System maintenance is easy. Systems comprise at least six vibration generators to act along orthogonal axes and also to generate the roll, pitch and yaw components of vibration. A spherical bearing is used to allow the rotational motion. By using electrodynamic vibration generators the system can operate over a wide frequency range with a high degree of accuracy. System maintenance is straight-forward.

■ Ride comfort evaluation system

The addition of rotational motion to a three-axis system enables 6 degree-of freedom testing, as is required for vehicle seat evaluation, for example.

Excitation direction	X axis	Y axis	
Rated Force (kN)	3.9	7.8	16
Maximum displacement (mmp-p)	150	150	100
Frequency Range (Hz)		1 - 100	
Table Size (mm)		1800×1800	
Vibration Generator	1	2	4

(1 3. 1 3)

neck the movie on You Tube

■ Large-scale 6 DOF vibration test system

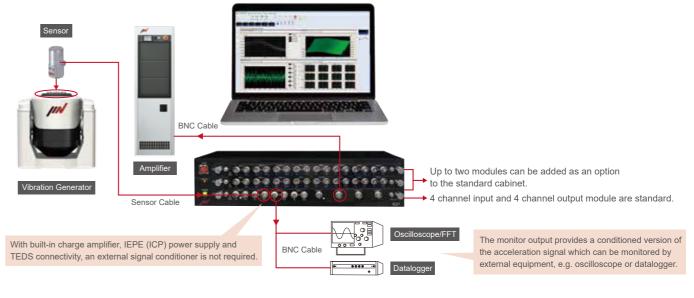
A total of 10 vibration generators (6 vertical and 4 horizontal) and a 4000 mm by 3500 mm large size table allow the simultaneous 6 DOF vibration testing. This versatile platform is ideal for testing large items such as railway carriage components.

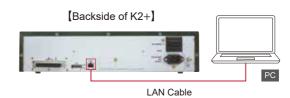
Excitation direction	X axis	Y axis	Z axis
Rated Force (kN)	80	48	96
Maximum displacement (mmp-p)		51	
Frequency Range (Hz)		2 - 150	
Table Size (mm)		4000×3500	
Vibration Generator	2	2	6

(Per 1 systen

■6 DOF simultaneous squeak and rattle test system for vehicle seats

Air-cooled vibration test system for the evaluation of squeak and rattle noise from an instrument panel or other car interior assemblies.


Excitation direction	X axis	Y axis	Z axis
Rated Force (N)	1600	1600	3200
Maximum displacement (mmp-p)		30	
Frequency Range (Hz)		5 - 100	
Table Size (mm)		1500×3500	
Vibration Generator	2	2	4


(Per 1 system)

Vibration Controller

System Composition

■ Hardware Specifications

Main Enclosure		
Number of Slots	3	
AC Power	Single-phase AC, 100 V-240 V (auto-selected)	
External Communication	Contact I/O (for emergency stop)	
Ambient Conditions	0-40°C, below 85% RH, non-condensing	
Dimensions	W430 × H100 × D383 mm (not including projecting parts)	
Mass	Approximately 7.0 kg	

Minimum Specifications of PC

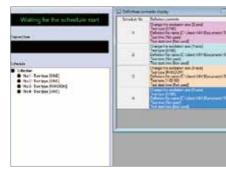
- One LAN port Gigabyte ethernet port and Gigabyte ethernet cable
 Microsoft Windows 10 Pro (64 bit) or Windows 10 IoT Enterprise (64 bit)*.
- Memory required (for 8 input channels)
- 4 GB or more
- Resolution of monitor and PC required 1280 x 1024 or more
- Recommended OS and memory vary depending on software, options number of I/O channels, etc.

*Please note that optional software "Program K2+" used for vibration controller K2+ also requires Japanese government export license (E/L).

		4-channel Input and 4-channel Output Module (standard)		8-channel Input Module (option)
	Number of Channels	4		8
	Input Connector	Bi		
	Input Signal			Itage, IEPE
	Charge Amplifier Sensitivity			or 10 mV/pC
	Charge Amplifier Cut-off		0.32	2 Hz
_	Maximum Input	Charge Input	±10000 pC or ±1000 pC	
Section		Voltage Input	±10000 mV	
C		IEPE input	±10000 mV	
Š	Sampling Frequency		102.4 kHz	maximum
nput	Voltage Input Coupling		AC o	r DC
п	AC Coupling Cut-off	0.1 Hz		Hz
	CCLD Amplifier (IEPE)	+24 VDC, 3.5 mA		
	TEDS (IEPE)	Version 0.9, Version 1.0		Version 1.0
	A/D Converter	Туре	ΔΣ	
		Resolution	32 bit	
		Dynamic range	121 dB	
		Digital filter		-0.06 dB, Stop-band attenuation: 85 dB
	Number of Channels	4 (One channel	is reserved for drive output)	
_	Output Connector	BNC		
Section	Output Signal	Voltage		
ct	Maximum Output	±10000 mV		
Se	Sampling Frequency	102.4 kHz maximum		
Ħ	D/A Converter	Туре	ΔΣ	
Output		Resolution	32 bit	
O		Dynamic range	120 dB	
		Digital filter	Pass-band ripple: ±0.005 dB Stop-band attenuation: 100 dB	

[Vibration Controller] K2+ [Vibration Controller] K2+

Intuitive Operation


Easily-recognised icons are used for file management.

Test Standard

* Standard for A-series and K-series

A test file will be automatically generated upon selection of the test conditions defined by the test standards. *Please refer to the following for the test standards.

Several different tests types are executed automatically and in sequence according to the pre-defined schedule.

Optional Test Standard

The main test standards stored in the Launcher software (Ver 22.2.0.0 onwards) are as follows as of December 2022. The Launcher software is an option for the K2.

JIS C 60068	Sine, Random, Shock
JIS D 1601	Automotive parts simulated long-life test
JIS E 4031	Railway vehicle parts functional test, Simulated long-life test
JIS Z 0200	Transportation test
JIS Z 0232	Transportation test (Random)
JASO D 014	Automotive parts functional test
ASTM	Transportation test
UN	Lithium-ion battery test recommendated by UN
ISO16750	Automotive parts test
ISO12405	Electric vehicle
IEC60068	Sine, Random, Shock
IEC62660	Random, Shock for secondary lithium-ion cells of electric vehicles
ISTA	Transportation test
IEC61373	Railway vehicle parts functional test
ISO13355	Transportation test (Random)
ISO4180	Transportation test
ISO19453	Electric vehicle parts
JIS E 3014	Parts for railway signal
EIA 364	Electrical connector performance test

*Version upgrade will incur an additional cost.

Option

LAUNCHER

Test file will be automatically generated upon selection of the test conditions defined by the test standards. Then, the test can be carried out just by pressing the start button.

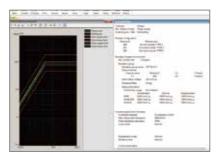
In-built "Quick Help" provides guidance on each operation.

SYSTEM MONITOR

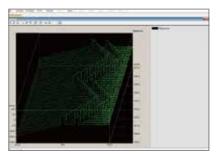
Statuses for vibration generator, amplifier test proceeding, and specimen can be observed on a PC or tablet by either wired or wireless LAN. Solutions can be seen on the Web browser upon the occurrence of any error. Installation of additional software is not necessary for PC or tablet.

Home screen

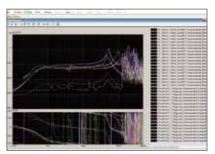
Home screen (error)



Eco screen


Camera screen

K2 DataViewer Free software


Software for displaying results in data files saved after SINE, RANDOM and SHOCK tests. It can be used for display of test conditions, graphed results, or for comparison between past test data (overlapping display) and generation of reports.


Test condition, graph of results

3D graph

Overlapping display

Report

■ System Requirements

[Supported OS]

Windows 10 (64bit), Windows 7 (32bit/64bit)

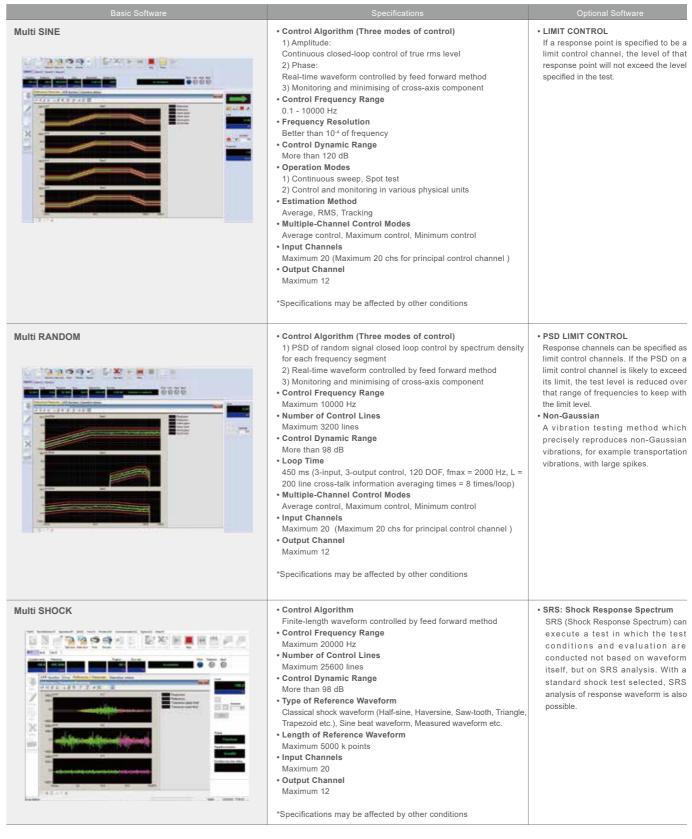
[Memory]

More than 512 MB of RAM is recommended

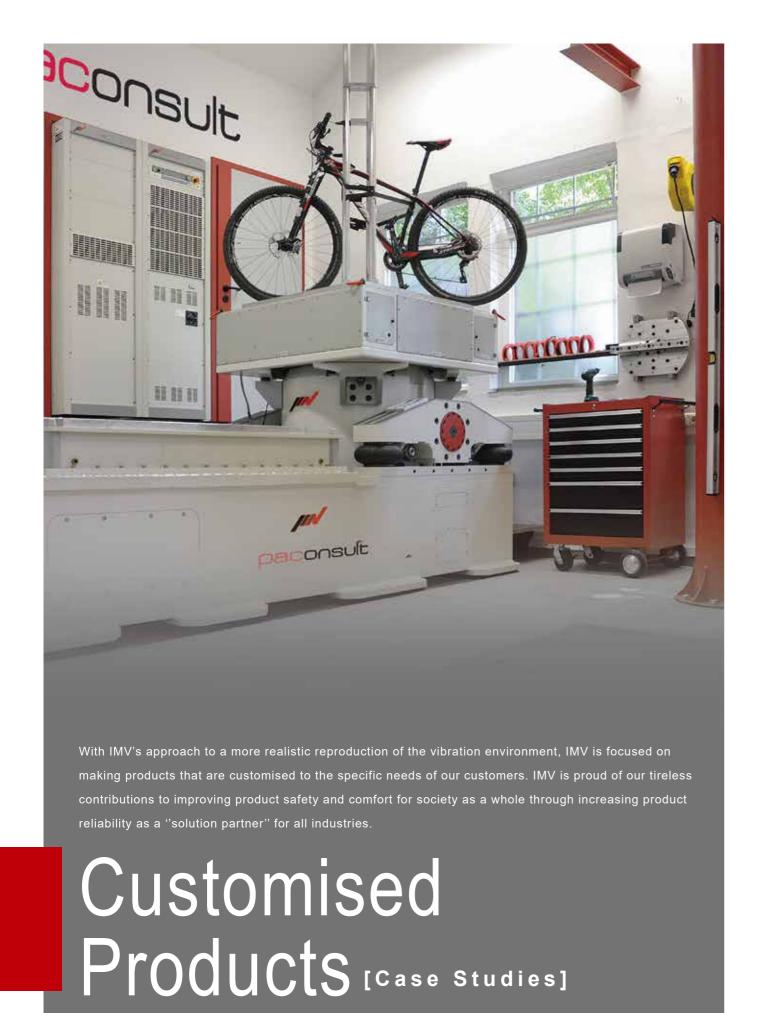
[Hard Disk]

More than 200 MB of free space is required

Application site


[Vibration Controller] K2+

[Vibration Controller] K2+


*Specifications may be affected by other conditions

execute a test in which the test conditions and evaluation are conducted not based on waveform itself, but on SRS analysis. With standard shock test selected, SRS analysis of response waveform is also possible.

Common optional software		Outline	·
CAPTURE: Analogue waveform signal data program	Provides analogue waveform signal capture. Saved data can then be used as a reference for SHOCK, BMAC waveform controls or Random vibration PSD control.	Sampling FrequencyData LengthInput ChannelWaveform edit/analysis function	51.2 kHz maximum Maximum 5000 k points Maximum 24 Filtering, Frequency transfer processing, PSD transfer, Transmissibility ratio between channe
SCHEDULER: Test scheduler	Pre-defined tests can be executed in sequence.		
TCP Communication Server	TCP communication server software that allows external applications to operate K2 applications and acquire vibration data and operating status by sending and receiving commands via TCP/I		

Case Studies

Accurate waveform reproduction is achieved over a wide frequency range of up to 500 Hz by employing electrodynamic vibration generators.

Torsion vibration test system

By building compact shakers on top of a multi-axis test system and exciting both systems simultaneously, reproduction of 'real road' 6-DOF and torsion is achieved.

3-axis simultaneous vibration test system

Test systems for the automotive tire industry, used for evaluating the transfer characteristics of a tire at varying air volumes and ride comfort.

Low cross-axis motion vibration test system

Ensures low cross-axis motion, equipped with a mechanism that matches the center of gravity of the assembly of specimen + fixture (+ slip table) to the excitation axis through vertical motion of the table-support bearing assembly.

6-DOF vibration test system

Evaluate road noise generated by a car by placing the test system under the wheel of the car and generating vibration of 6-DOF nature into one wheel.

200 mm peak-to-peak displacement vibration test system

This system is particularly suited for applications requiring high velocity at low frequencies. It has a high over-turning moment due to a lateral load reinforcement guide, allowing tests of specimens with a large offset center of gravity.

6-DOF large vibration test system

A reproduction of ultimate vibration realism for testing the ride comfort of car seats with a 6-DOF vibration test system.

6-DOF simultaneous squeak-and-rattle test system for instrument panels

A 6-DOF vibration test system with 8 compact, silent shakers for squeak-and-rattle acoustic noise evaluation of instrument panels.


Diagonal excitation vibration test system

Diagonal excitation for two-wheeled vehicles. Angle of rotation for the vibration generator can be adjusted in 1 degree increments.

Vibration test system for large battery pack testing

The K200 or K350 with upgraded Shock Force up to 1MN, are designed to be integrate with a 3 x 3 meter interchangeable size slip and modular guided Head Expander for testing large Battery Packs for Automotive and other applications. This system can be integrated as direct coupling with a climatic vibration chamber.

Torsion test system (6 DOF + Torsion vibration test system)

A 6 DOF vibration test with measured running data is possible. Torsion on a car body can be simulated while the car is running.

Exhaust system durability testing

Durability testing with hot air and vibration. Air temperature range is from 200 °C to 900°C and air flow from 2 to 10 m³/min is channeled into the exhaust system from a hot air generator.

Automotive Parts

Case Studies

Dynamic spring constant measuring system

Highly accurate testing and analysis are possible over a wide frequency range from 1 Hz up to 2000 Hz.

Low-acoustic-noise 3-axis vibration test system

Simulation testing using actual measured data or more traditional random testing is possible in 3-axis simultaneous excitation. When combining the shaker system with a half-anechoic room, 3D squeak-and-rattle testing is possible in an environment with a background noise level of less than 30 dB.

Low-acoustic-noise 3-axis vibration test system + guide rail

A vibration system can be set up to move along guide rails. The system can be combined with other test equipment if necessary, for example a temperature chamber.

Vertical/Horizontal changeover chamber combined a vibration test system

Used for durability testing of on-board battery chargers and inverters/DC-DC converters for electric cars. Vertical and horizontal excitation, both combined with a chamber, is nossible

2-axis climatic chamber combined vibration test system

A double-sided door makes it easy to reach the specimen. This system is equipped with a temperature alarm meter for surface temperature monitoring and CO2 automatic fire extinguisher. Sine: 1,000 Hz, Random: 2,000 Hz

Ultra-high temperature (900°C) chamber combined with single-axis vibration test system

Applicable to temperature and humidity environmental testing for products which may be exposed to ultra-high temperature of up to 900 °C. Employs the virtual point control method to control acceleration of the specimen in the chamber without accelerometers mounted.

3-axis simultaneous vibration test system

Simultaneous 3-axis vibration test system designed for earthquake resistance tests and earthquake regeneration. Vibrations in three directions can be simultaneously applied to the specimen.

Compact chamber combined with vibration test system

Function tests and durability tests of parts exposed to sudden temperature change are possible.

case Studies

Electronic Parts

Sensor calibration vibration test system

Pure single-axis vibration which is very hard to generate with a conventional single-axis system. 4 vibration generators are located orthogonally to the major axis to cancel unwanted cross-axis acceleration.

High-frequency vibration test system

Combining 4 low-noise compact vibration test systems with a chamber and using multi-point control, vibration excitation combined with a climatic test is achieved from 2 kHz up to 10 kHz.

Environmental test system

Large area heat resistance glass (-40 °C to 110 °C) is provided for checking the specimen inside the chamber during a combined test. To reduce the required installation space, a guide rail system is used with the vibration test system and horizontal slip table.

Crimping terminal evaluation system

Setting time is reduced with a dedicated fixture for various sizes of crimping terminal. 8 to 20 samples can be evaluated at one

Customised Products



Transportation Test

Underslung 6-DOF vibration test system (Railway testing)

A combination of 10 vibration generators (6 vertical and 4 horizontal) and a 4,000 mm by 3,500 mm large-scale moving table allowing simultaneous, multi-point vibration testing. This versatile vibration platform is ideal for testing large items such as railway carriage parts and fuel cells.

3-axis large vibration test system for transportation simulation

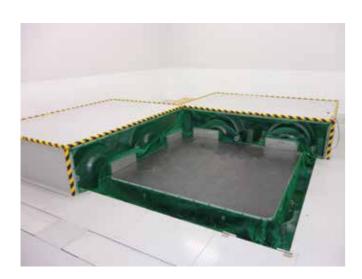
Vibration test system for very large specimens. Moving table size is 3,000 mm × 2,000 mm composed of 2 off 125 kN shakers for the X and Y axes and 2 off 60 kN shakers for the Z axis.

3-axis simultaneous vibration test system

Simultaneous, multi-axis vibration data acquisition with IMV's vibration measurement unit built in to a railway container. Data is subsequently used for a real waveform 3-axis simultaneous vibration test.

2-axis large vibration test system

Table size 2000 x 2500 mm, Maximum load 2000 kg Transportation test for large specimens or vibration durability test


Case Studies

Construction Machinery

Energy-saving vibration test system with large slip table

Maximum load is 2,000 kg. (when used with the lateral load reinforcement guide or slip table) The built-in automatic ECO function optimises power consumption across all vibration test types.

6-DOF vibration test systems

Durability testing with real measured waveforms for excavator cabins or heavy machinery tanks. The system reproduces vibration in X, Y, Z axes as well as roll, pitch and yaw.

3-axis changeover vibration test system

Once the specimen and fixture are set, it is possible to switch the X/Y/Z axis excitation automatically. No time is spent remounting specimens or assemblies. Tests can be easily continued withouttime loss.

Large vibration test system for high-frequency testing (up to 5000 Hz)

For high-frequency tests with large specimens. The slip table can be replaced according to the size of the specimen and each table can be used for high-frequency testing.

Customised Products

Earthquake Resistance

Large-scale earthquake-resistance vibration test systems

The unique hybrid method achieves accurate reproduction of both large-displacement and high-frequency waveforms by utilising the benefits from an electrodynamic shaker and an AC servomotor.

Large-scale earthquake-resistance vibration test systems

An industry first, hybrid technology low-frequency vibration test system which simulates highly accurate waveforms including high- and low-frequency components simultaneously with an electrodynamic vibration generator and AC servomotor.

Large 2-axis simultaneous, multi-point excitation vibration test system

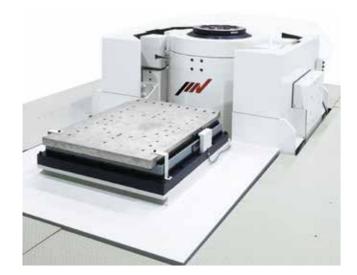
Large vibration test system with a table size of 4500 mm × 4500 mm. Rated displacement: 400 mm peak-to-peak horizontal, 200 mm peak-to-peak vertical. Maximum load of 20 ton.



Earthquake resistance vibration test system for seismic switches

Hydraulic bearing (Type TT) makes it possible to achieve a waveform reproduction error ratio within 2% using only 2 or 3 drive signal updates.

Maximum displacement: 150 mmp-p Frequency range: 0.5-20 Hz



350 kN large water-cooled vibration test system

K350 is designed to test large satellite systems at high acceleration and frequency, with continuous displacement up to 3" - necessary for quasi static testing. It features a 2000 mm vibration table with a maximum load capacity of more than 10,000 kg.

Large-scale 200 kN vibration test systems for the aerospace industry

With low displacement requirements for the aerospace industry, this system is fitted with a TEAM slip table using the T-Film bearing. High over-turning moment and low cross-axis acceleration are features of this system in both vertical and horizontal operation.

Vibration test systems for clean rooms

The air inlet of all air-cooled shakers can be ducted from outside of the clean room using a concentrated suction top cover. This allows using air cooled shakers even in clean room conditions for space testing.

Multi-point, multi-axis vibration test system

Multi-point vibration test system with three-axis simultaneous excitation. The system has the capability to carry out tests of very long specimens over a high frequency range.

Customised Products

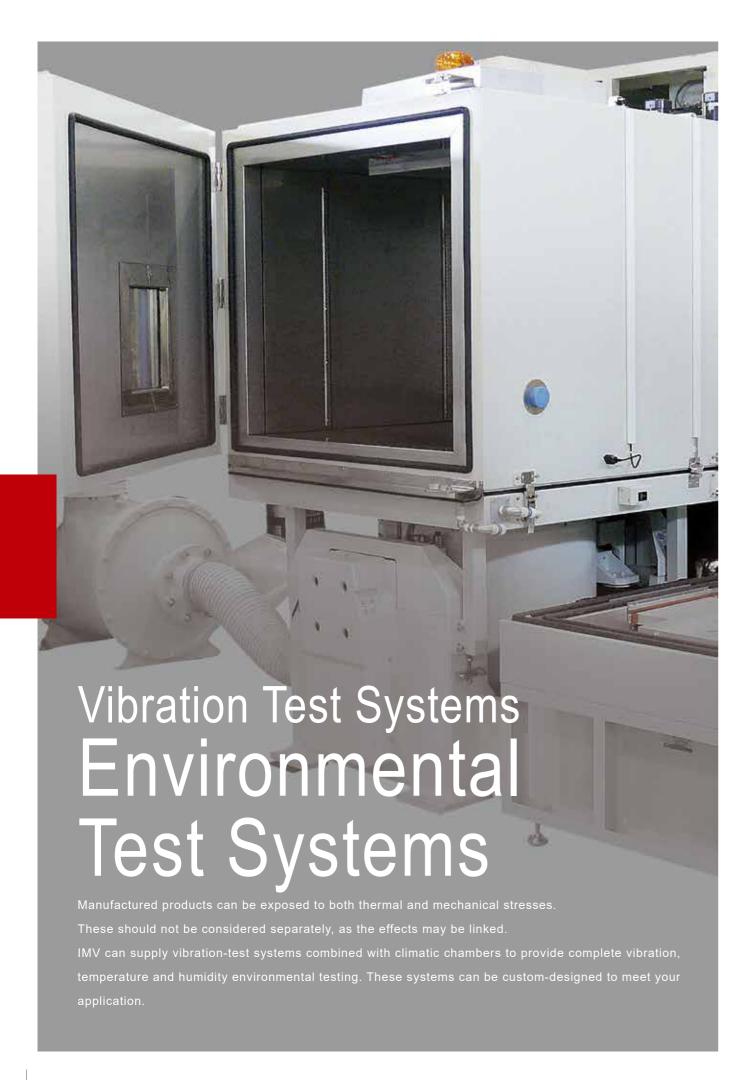
Other Applications

Vibration test system for fatigue testing of copper plating

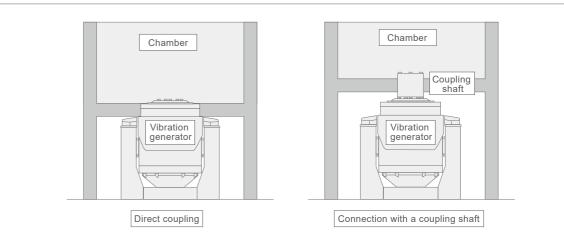
Especially developed for the fatigue testing of copper plating by customising a compact shaker from IMV's m-series. Simultaneous testing of 12 sheets of copper plate is possible with this compact system.

Vibration test system with acid-resistant table

A standard specification slip table with alumite coating (as an example) is not suitable for vibration testing in the battery industry due to damage caused by leaking battery chemicals. A specially-formulated coating for the slip table is applied which is resistant to battery leaks.


Compact vibration test system for sensor calibration

This system realizes low distortion in low-frequency and low-acceleration areas and is used as a calibrator at JQA and other public institutions.


Pressure-proof flexible duct

The neutral position of the horizontal slip table can be adjusted and the slip table displacement is controlled as well. This allows a specimen to be permanently and rigidly fixed on one side and mounted on the slip table on the other side.

Chamber for Vertical Excitation

Model	:	Syn-6HW-30-V
-------	---	--------------

Internal dimensions	W1800×D1900×H1500 mm
Temperature range	-30 °C to +80 °C
Humidity range	30 % to 95 %RH
Temperature pull down time	+45 $^{\circ}$ C => -30 $^{\circ}$ C In 35 minutes (Curve gradient)
Temperature heat up time	-30 °C => +80 °C In 25 minutes (Curve gradient)

Chamber for both Vertical and Horizontal Excitation

Horizontal slip table combined vibration test system.

Combining a rail support for horizontal move and a lift support for vertical move, chamber combined test for both vertical and horizontal axis.

■ Rail and lift support

Model: Syn-3HA-70-VH

W1000×D1000×H1000 mm
-70 °C to +180 °C
20 % to 98 %RH
1 °C / minutes or more (Curve gradient)
2 °C / minutes or more (Curve gradient)

Check the movie on You Tube

■ Option for chambers for both vertical and horizontal excitation

Optional crane

Adding a dedicated crane provides safe and simple loading and unloading of test specimens.

Optional crane and observation door

The vertical base can be attached and detached using the optional crane with the head expander straying mounted on the vibration generator.

In addition, operator-friendly environment such as observation door and body suspension automatic adjustment mechanism etc. are equipped.

Side window

With a side window, chamber combined docking is possible with the specimen attached to the shaker for vertical excitation use.

Cable bear

Cables and water pipes put together with the cable bear provide safe work environment.

61 [Environmental Test Systems] Vibration Test Systems

Chamber for Multi-Axis Excitation

Temperature, humidity chamber for multi-axis vibration test system.

Total test time can be reduced by eliminating the need to reconfigure for testing each axis.

2-axis

Model: Syn-4HA-40-M

Internal dimensions	W1200×D1200×H1000 mm
Temperature range	-40 °C to +150 °C
Humidity range	20 % to 98 %RH
Temperature pull down time	+20 $^{\circ}\text{C}$ => -40 $^{\circ}\text{C}$ In 80 minutes (Load condition:combined + aluminum 60 kg)
Temperature heat up time	-40 °C => +150 °C In 80 minutes (Load condition:combined + aluminum 60 kg)

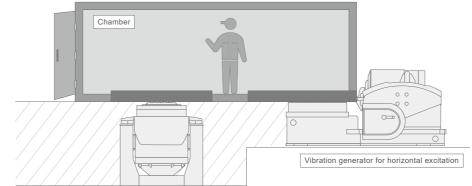
3-axis

Model: Syn-3HA-40-M

Internal dimensions	W1000×D1000×H1000 mm
Temperature range	-70 °C to +180 °C
Humidity range	20 % to 98 %RH
Temperature pull down time	+20 °C => -70 °C In 40 minutes (Curve gradient)
Temperature heat up time	-70 °C => +180 °C In 40 minutes (Curve gradient)

Prefabricated Chamber for Large Specimens

Large-sized specimen can be tested with a chamber combined test in both vertical and horizontal axis



Model: Syn-6HA-40-VH

Internal dimensions	W4000×D2000×H2500 mm
Temperature range	-40 °C to +120 °C
Humidity range	30 % to 95 %RH
Temperature pull down time	+20 °C => -40 °C In 120 minutes (Curve gradient)
Temperature heat up time	-40 °C => +150 °C In 150 minutes (Curve gradient)

Vibration generator for vertical excitation

Docking image of combined systems

[Environmental Test Systems] Vibration Test Systems

For installation of vibration test systems

Basic units used for vibration test

There are four important units for a vibration test. Force [N], Acceleration [m/s²], Velocity [m/s], and Displacement [mm peak-to-peak

The force "F" required to give an object of mass, "m" acceleration "A" is;

SI units Gravitational units F : force F=mAm: mass [kg] A: acceleration [m/s²][G]

That is to say, when a mass of 1 kg is accelerated to an acceleration of 1 m/s² the required force is 1 N. Gravitational acceleration "G" equals to 9.8 m/s²

To describe vibration, frequency and vibration level need to be specified. Vibration is a form of movement; with a consequent relationship between acceleration, velocity and displacement. To describe vibration level, any of these units can be used. Here are the relationships between each of the units

We have an object moving in a sine wave.

The displacement is;

D = D0 sinωt

The velocity is obtained by differentiation of the displacement. Therefore

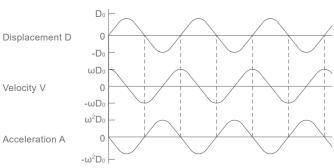
 $V = \frac{dD}{dt}$

V = ωD0 cosωt

The acceleration is obtained by differentiation of the velocity. Therefore;

 $A = \frac{dV}{dV}$

 $A = -\omega^2 D0 \sin \omega t$


As we substitute

 $\omega = 2\pi ft$

We have formulae indicated only in amplitude;

$V = \omega D = 2\pi fD$	D:Displacement	[m ^{0-p}]
$A = \omega^2 D = (2\pi f)^2 D$	V:Velocity	[m/s]
	A:Acceleration	$[m/s^2]$

The following diagram shows waveforms for displacement, velocity and acceleration.

We get the formulae below by transforming the above formulae

$$f = \frac{A}{2\pi V}$$

$$A = \frac{V^2}{D}$$

$$V = 2\pi fD$$

$$D = A$$

In the field of vibration test, we use mm p-p for the peak to peak displacement.

Therefore

$$D = \frac{d}{2000}$$

is substituted in to all of the above formulae

$$f = \frac{A}{2\pi V}$$

$$A = \frac{(2\pi f)^2 d}{2000}$$

$$V = \frac{2\pi f d}{2000}$$

$$d = \frac{2000A}{(2\pi f)^2}$$

$$f : Frequency[Hz]$$

$$A : Acceleration[m/s^2]$$

$$V : Velocity[m/s]$$

$$d : Displacement[mmp-p]$$

The following is an example

[ex] i)
$$f = 50[Hz], d = 2[mmp-p]$$

$$V = \frac{2\pi f d}{2000} = \frac{2 \times \pi \times 50 \times 2}{2000} = 0.314[m/s]$$

$$A = \frac{(2\pi f)^2 d}{2000} = \frac{4 \times \pi^2 \times 50^2 \times 2}{2000} = 98.7[m/s^2]$$
II) $A = 100[m/s^2], V = 0.5[m/s]$

$$f = \frac{A}{2\pi V} = \frac{100}{2 \times \pi \times 0.5} = 31.8[Hz]$$

$$d = \frac{2000V^2}{4} = \frac{2000 \times 0.5^2}{100} = 5[mmp-p]$$

Please see the conversion chart (Exchange table) on page 72 for calculation

About [dB]

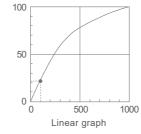
We use "dB" as a unit when describing the proportional relationship of physical quantities. Especially, in cases where one value is thousands or millions times a multiple of a reference value, then we use the logarithmic scale "dB" instead of a linear scale. This makes the values more sensible and is an industry standard practice. "dB" is expressed by the following

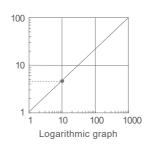
$$a = 20 \log \frac{A_1}{A_0} [dB]$$
 A₁ = Comparison value A₀ = Reference value

One million times is ;

$$a = 20 \log \frac{1,000,000}{1} = 120[dB]$$

Not only does dB reduce the number of digits (smaller numbers to handle) but also simplifies calculations. For example, adding 25 dB and 30 dB makes 55 dB but if you do it in a linear way;


$$25[dB] = 20 \log A$$
 $A = 10^{\frac{25}{50}} = 17.78$
 $30[dB] = 20 \log B$ $B = 10^{\frac{20}{50}} = 31.62$
 $A \times B = 17.78 \times 31.62 = 562.3 = 20 \log 562.3 = 55[dB]$


Now you see you can use addition instead of multiplication by using "dB". That is to say, it is very easy to calculate by using "dB". The following is a conversion table for "dB" and multiple

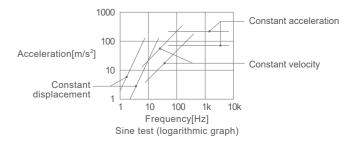
dB	0	0.1	1	3	6	10	20	30	40	60
Multiple	1	1.01	1.12	1.41	2.0	3.16	10	31.6	100	1000
dB	0	-0.1	-1	-3	-6	-10	-20	-30	-40	-60
Multiple	1	0.99	0.891	0.709	0.501	0.316	0.1	0.0316	0.01	0.001

Use of a logarithmic graph

We often use a logarithmic graph when we need to plot data for vibration testing or other physical phenomena.

On the linear graph, we can read 20 for Y when X is 100. But we can hardly read Y when X is 10 or 1. Whereas on the logarithmic graph, we can read the value even if it is 1/100 or 1/1000 of the maximum value. We use a logarithmic graph for such benefit.

Sine test graph


We often use the graph below when running a Sine vibration test. This is a log-log graph that was discussed above. Asymptotes of constant displacement, velocity and acceleration are shown. Here is an example of an asymptote of constant velocity. From the formulae we learned before

> A · Acceleration $A = 2\pi fV$ f : Frequency V : Velocity

From this equation we can read that acceleration A is increased 10 times when frequency f is also increased 10 times. On the graph below, we see that the acceleration increases to 100 m/s² from 10 m/s² as the frequency increases from 10 Hz to 100 Hz. In the case of constant displacement

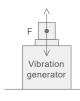
> $A = (2\pi f)^2 D$ D : Displacement

The equation shows that acceleration A is increased by 100(102) times when the frequency f is increased by 10 times. Acceleration being proportioned to the second power of Displacement. On the graph below, we can read that the acceleration increases to 100 m/s² from 1 m/s² as the frequency increases to 10 Hz from 1 Hz.

The graph shows the asymptotes when velocity or displacement stays constant.

For installation of vibration test systems

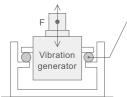
For installation of vibration test systems


Vibration insulation for a vibration generator

When using a vibration generator, the vibration is transmitted to the building and other facilities through the floor.

Particularly in the frequency range of 2 Hz to 20 Hz, even a small proportion of vibration from the vibration generator can have a large effect on buildings because they have their own resonances in this frequency range.

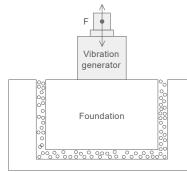
Therefore, a vibration generator needs a vibration isolation system. The following shows some examples.


1) No insulation

F·Force

All the force generated by the vibration system is transmitted in to the floor. This may excite resonances in the buildings and other facilities. The vibration generator itself may sometimes jump up and down

2) Body suspension

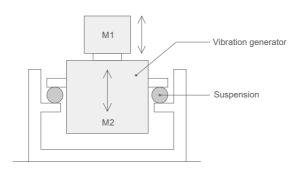

IMV uses this method of vibration isolation except for the small, compact shaker range. This may limit a shaker system's maximum displacement when the operating frequency

See "Limitation of maximum displacement"

3) Bottom suspension

4) Isolated foundation

This is the best way of vibration isolation.


Generally, the mass of the foundation block should be at least ten times heavier than the rated force of the system. Typically, the mass of the foundation should be twenty times heavier.

If you are interested in this method of isolation, please contact IMV

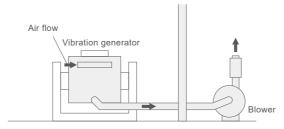
Limitation of maximum displacement

There are several methods for vibration isolation. All of these ways bring limitations on maximum displacement.

In the case of body isolation, the vibration generator body reacts against the movement of the specimen.

In the case of body isolation, the vibration generator body will be excited by the reaction force. If the shaker excitation frequency is 2-7 Hz, this may coincide with the resonant frequency of the armature suspension system and the body suspension system. The armature and body motion could be almost in "anti-phase" resulting in the absolute value of the available armature displacement becoming severely limited.

Typically only 10 mmp-p displacement is available from a 51 mmp-p rated vibration generator.

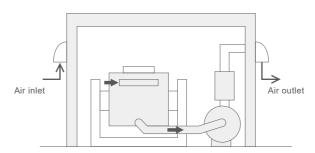

If using an "isolated foundation", the effective mass of the foundation plus vibration generator body could be much heavier than specimen+armature assembly. Therefore, limitation for the available displacement becomes negligible.

Noise control

When the vibration test system is installed, it is necessary to think about the noise. There are several sources of noise such as excitation noise, suction noise (for air-cooled systems), blower noise, blower exhaust noise and cooling fan noise of the power amplifier etc.

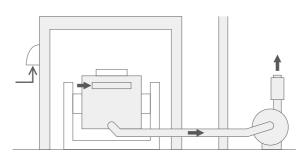
The shaker excitation noise might exceed 100 dBA at a typical maximum acceleration of 980 m/s². The suction noise is about 90 dBA, and blower noise + blower exhaust noise is about 80 dBA. However, these figures can differ depending on the shaker model.

1) Installing the blower outside the room



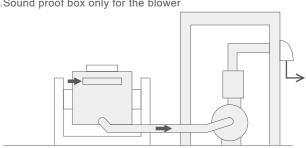
This is generally a simple method.

The blower noise and the blower exhaust noise are reduced in the test area. However, this method doesn't change the suction noise or the excitation noise of the vibration generator. * The blower cannot be installed outdoors.


2) Sound proof box

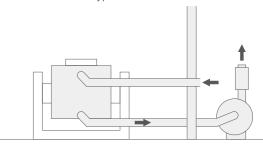
A. Vibration generator and blower

This method reduces the excitation noise and the blower noise. *During the blower is stopped, it is recommended to make treatments to prevent air backflow.


B. Vibration generator only (blower is outside the room)

The excitation noise and the air inlet noise are lowered.

It is recommended to place the blower outside the room.


C.Sound proof box only for the blower

The blower noise is reduced

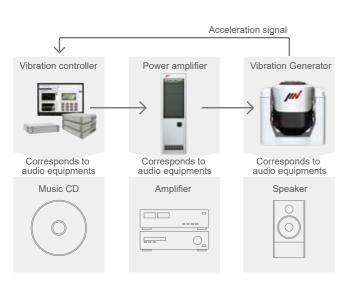
This method doesn't change the suction noise nor the excitation noise of the vibration generator. *During the blower is stopped, it is recommended to make treatments to prevent air backflow.

3) Concentrated suction type

The suction noise of the vibration generator falls by about 5 dB. The main purpose of concentrated suction is to take air from the outside without using the air in the room to cool the shaker (typically used for clean rooms etc.)

* The blower cannot be installed outdoors.

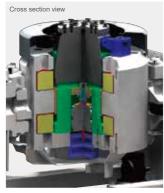
For installation of vibration test systems For installation of vibration test systems


^{*} The blower cannot be installed outdoors.

Mechanism of vibration test systems

Mechanism of vibration test systems

■ Electrodynamic vibration test systems

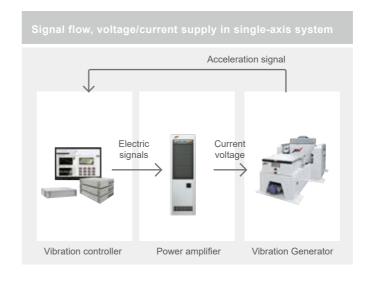

This principle is similar to audio systems where electronic signals from different sources (e.g. CDs) are amplified and converted to sound by loudspeakers. For vibration test systems, the vibration generators correspond to the loudspeakers of the audio systems. They have vibration controllers instead of a sound source to drive the vibration generators feeding the electric current through the amplifiers. The difference is that the signals from the transducers mounted on the specimens and/or vibration tables to monitor their motions are fed back to the vibration controllers in order to control the vibrations and meet the requested test conditions.

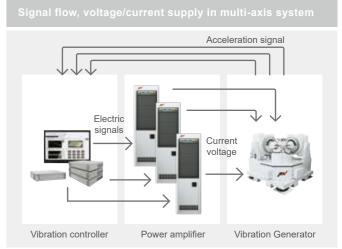
■ Vibration generator

The operating principle is based on Fleming's "left hand rule". When an electric current flows into a wire within a magnetic field, it creates a force perpendicular both to the field and the direction of the current.

■ Vibration controller

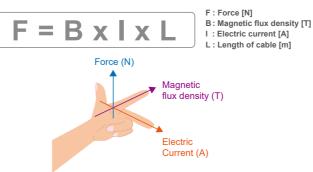
The original waveforms will not be reproduced by merely applying the vibration data obtained in the field or from test specimens. The waveforms will be totally deformed due to the characteristics of the amplifiers and combined dynamics of the vibration generators and test specimens. The vibration controllers cause the vibration generators to generate the designated vibration and automatically compensate for these dynamics. All IMV vibration controllers are customised for each of our clients in order to meet their particular needs. We always put the customer first and make our products user-friendly.

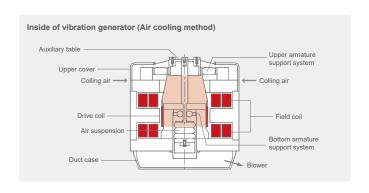

■ Power amplifier


Power module SA-320

The role of the power amplifier is to feed driving current to the vibration generator, converting the small electrical signal generated in the vibration controller to the large current of higher voltage. IMV's power amplifiers employ the switching amplifier system. They use mainly the compact and highly efficient power modules of the top level in this industry to contribute to energy and space-saving.

Principles of operation



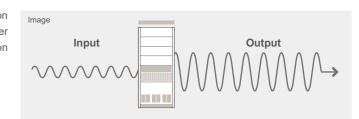


■ Vibration generator

The operation principle is based on Fleming's "left hand rule".

The formula below represents Fleming's left hand rule.

■ Cooling method of vibration generator

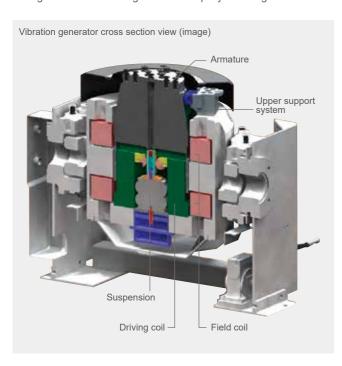

The vibration test system can employ either of two methods to cool: air- or water-cooling. Each method has its own key features. You can select a cooling method that meets your installation requirements based on the key features listed below.

Cooling method	Air cooling	Water cooling			
How it works	Cools the coils by using air from outside. Forces exhaust by blowser.	The coils are made of pipe and distilled water is circulated to cool the coils using a heat exchanger and a cooling water.			
Key features	Employs only a blower as cooling equipment. Easy to install.	Operation noise is significantly lower compared to air cooling.			
Points to ponder	Duct connection or soundproof treatments may be necessary to reduce suction noise from the vibration generator and exhaust noise from the blower.	A primary water-cooling facility is necessary.			

■ Power amplifier

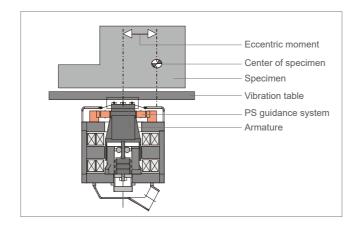
A power amplifier in the system supplies electric power to the vibration generator. The power amplifier generates a higher current of higher voltage in response to low power electric signals from the vibration controller.

Invention with IMV's originality


Original technology utilised to improve durability and performance of vibration generators

■ Upper (armature) support system PS guide

The vibration generator receives dvnamic stress from its own vibration. The patented Parallel Support Guide (PSG) design can support the armature. PSG significantly improves durability, reliability of the system, and quality of vibration at the same time. This compact design provides enough


stiffness to exceed functions of the roller support system and achieves high durability, producing a self-holding supporting system through the alternative alignment of uniquely-curved gears.

■ Large allowable eccentric moment

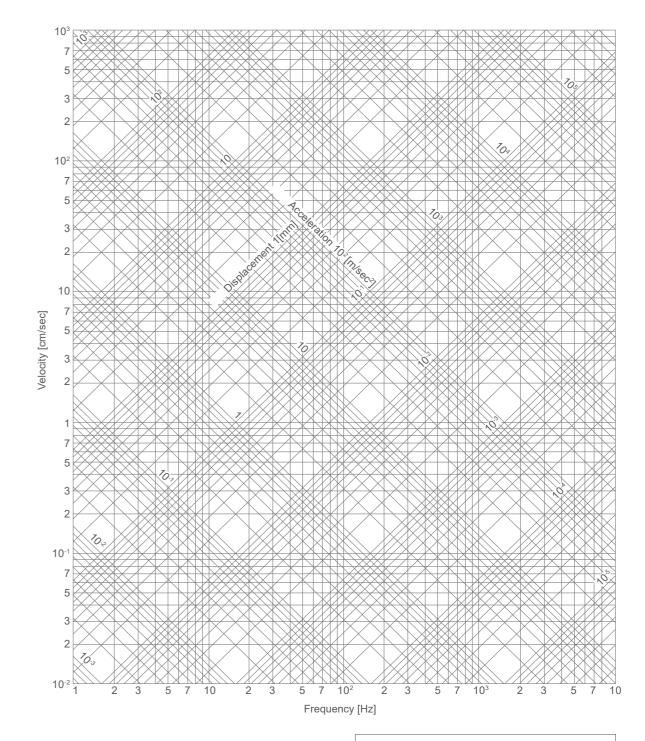
When the table working surface of the vibration generator is not wide enough to mount the specimen, it must be expanded using a fixture or auxiliary table. Large lateral rigidity of the table guidance systems is important, because it is difficult to place the center of gravity of the specimen on the center line of the vibration table. The larger the specimen is, the more important this becomes.

Our PS guidance system (Parallel Support Guide) realizes a 130% increase in rigidity over conventional models with the same force range. It has enabled specimens whose centers of gravity are not located on the center line of the vibration table to be tested at a higher acceleration.

■ Compatibility of lateral rigidity and waveform regeneration accuracy

Usually lateral rigidity and waveform accuracy conflict with each other. The PS Guidance system makes their compatibility possible. It enables vibrations of lower waveform distortion to be combined with high fidelity.

■ Improvement of durability


System lifespan has been increased by 10 times (compared to conventional systems), lengthening intervals between maintenance.

■ Flexibility to respond to demand for large displacement tests

Flexibility enables the system to respond to demand for 100 mm-stroke vibration tests.

Conversion Table

Relationship between frequency, displacement, velocity and acceleration in sine vibration testing

Displacement

Velocity

Acceleration

f: Frequency [Hz]

Note: D,V and A are in single amplitude

Example

- 1) f=50 Hz, D=1 mm V=31 cm/sec, A=99 m/sec²
- 2) f=100 Hz, V=100 cm/sec D=1.6 mm. A=630 m/sec²
- 3) f=600 Hz, A=60 m/sec² $D=0.0042 \text{ mm}(4.2 \mu\text{m}), V=1.6 \text{ cm/sec}$

IMV Test Laboratory Network

IMV's test laboratory network provides full support to customers

IMV's full service offerings make us the customer's partner of choice

Since 1988, IMV has been pioneering the test laboratory business in Japan. IMV opened six test laboratories in Japan and two overseas. IMV's test experts solve problems with the highest quality and using the most advanced test systems. IMV has worked on over 20,000 test projects.

Certified to ISO/IEC 17025

IMV's test laboratories are authorised and operating under quality control management systems in accordance with the international standard ISO/IEC 17025, which specifies the testing capability and test laboratory calibration.

[Outline of Japanese laboratory]

- 1) Certification number: RTL04240
- ② Authorisation organisation: Public Interest Incorporated Association the Japan Accreditation Board
- 3 Authorisation date: March 15th, 2016
- Vibration test/shock, test/temperature, cycling test / vibration and temperature (4) Authorised field: cycling test/ISO16750-3 TEST I (engine) and TEST IV (vehicle body)

[Outline of Thai laboratory]

- ① Certification number: 4784.01
- ② Authorisation organisation: A2LA
- 3 Authorisation date:
- June 26th. 2018
- Vibration test (Sine), Vibration test (Random), Shock test, Temperature cycling test, (4) Authorised field: Vibration and temperature cycling test, Temperature test (hot), Temperature test (cold),
 - Temperature and humidity cycling test, Temperature and humidity static test

[Outline of Vietnam laboratory]

- 1 Accreditation number: VILAS 1284
- 2 Certification Bodies: Bureau of Accreditation Vietnam (BoA)
- (3) Accreditation date: 2nd March 2020
- ④ Accreditation scope: Vibration test (Sinusoidal), Vibration test (Broad band random). Shock test.
 - Dry heat environmental test, Cold environmental test, Change of temperature test, Damp heat environmental test (steady), Damp heat environmental test (cyclic).

e-Test Centre Japan

Focused on solving problems for our customers, the latest test laboratory brings together Japan's technology for reliability evaluation. Companies complement each other, offering high value-added services such as precise analysis, new test methods, development of new facilities and so on. EMC testing has been carried out by dedicated engineers since November 2019.

- Reliability evaluation test for e-mobility parts such as large-sized motor or inverter of EV/HEV
- Evaluation of large parts (e.g.100 kg), 1 m is possible while the part is in operation
- Various environmental tests such as high stress temperature cycle test or salt spray test
- Ultra-high temperature (900 °C) chamber combined vibration test is available
- EMC testing by dedicated engineers
- Full security system

4102-142 Miyadera, Iruma, Saitama 358-0014, Japan Tel: +81-4-2009-1043 Fax: +81-4-2009-1044 E-mail: info-etcj@imv-corp.com

Chamber Combined Vibration Test System with a Slip Table

High Stress Temperature Cycle Test System

Cyclic Corrosion Test System

Anechoic chamber

(Japanese only)

Advanced Technology Centre for Environmental Testing

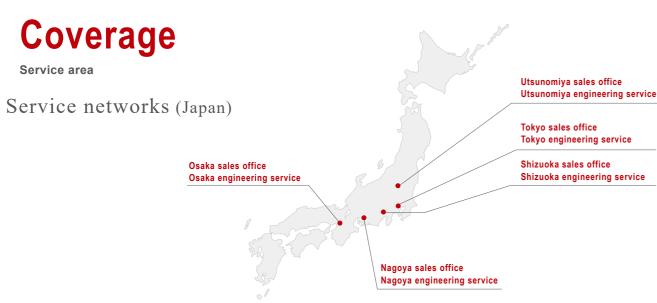
In order to meet future needs, we installed a full range of vibration test systems for battry testing and very large specimens.

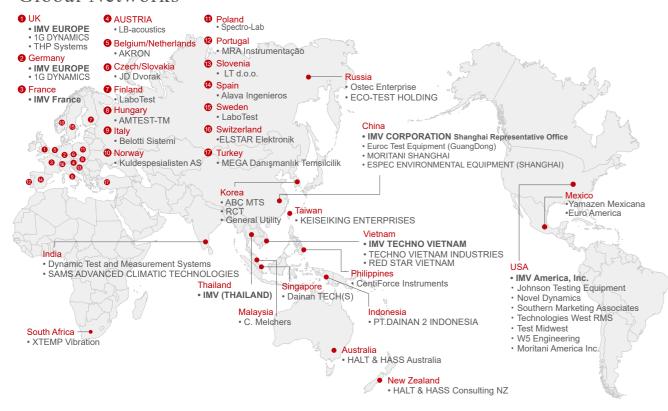
ATC is a facility that takes into consideration the IT environment and the security of information based on ISO 27001

- Installed Japan's largest vibration test system, 350 kN
- Lithium-ion battery testing for EV/HEV
- Installed a large earthquake resistance test system capable of reproducing earthquake waves
- · High-velocity shock test is available
- Full security system

The world's largest 350 kN Vibration Test System with a Slip Table

3-axis Large Earthquake-Resistance Vibration Test System


Chamber Combined Vibration Test System with a Slip Table


2193-28, Yatsusawa, Uenohara-shi, Yamanashi, 409-0133, Japan Tel: +81-554-62-6677 Fax: +81-554-62-6678 E-mail: info-uenohara@imv-corp.com

(Japanese only)

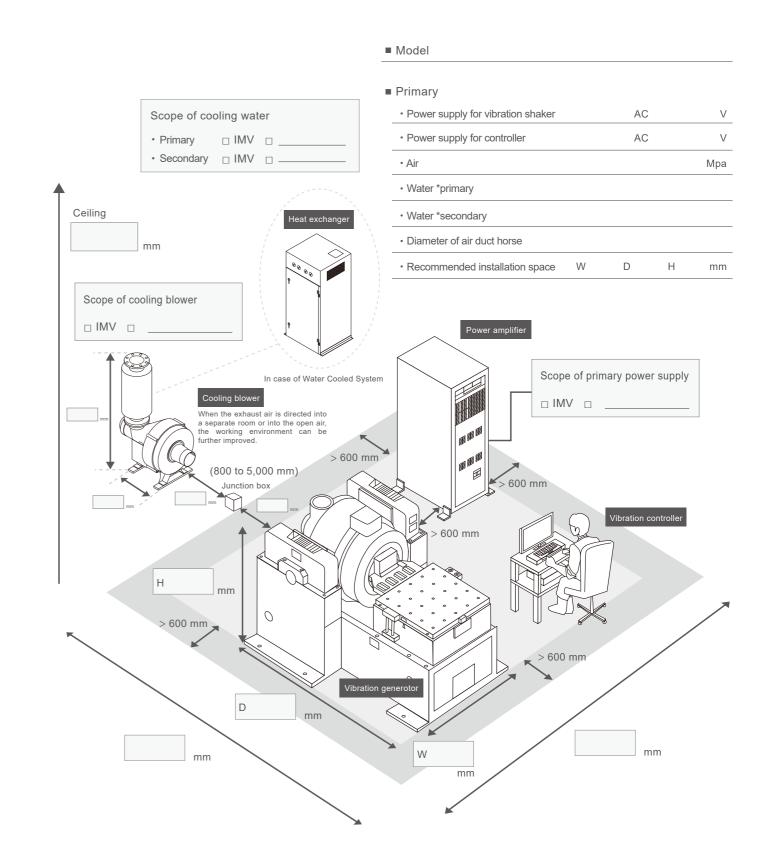
Global Networks

Thailand IMV(THAILAND)CO.,LTD.

USA IMV America, Inc

UK • IMV EUROPE LIMITED
• Manufacturing and
Demonstration Centre

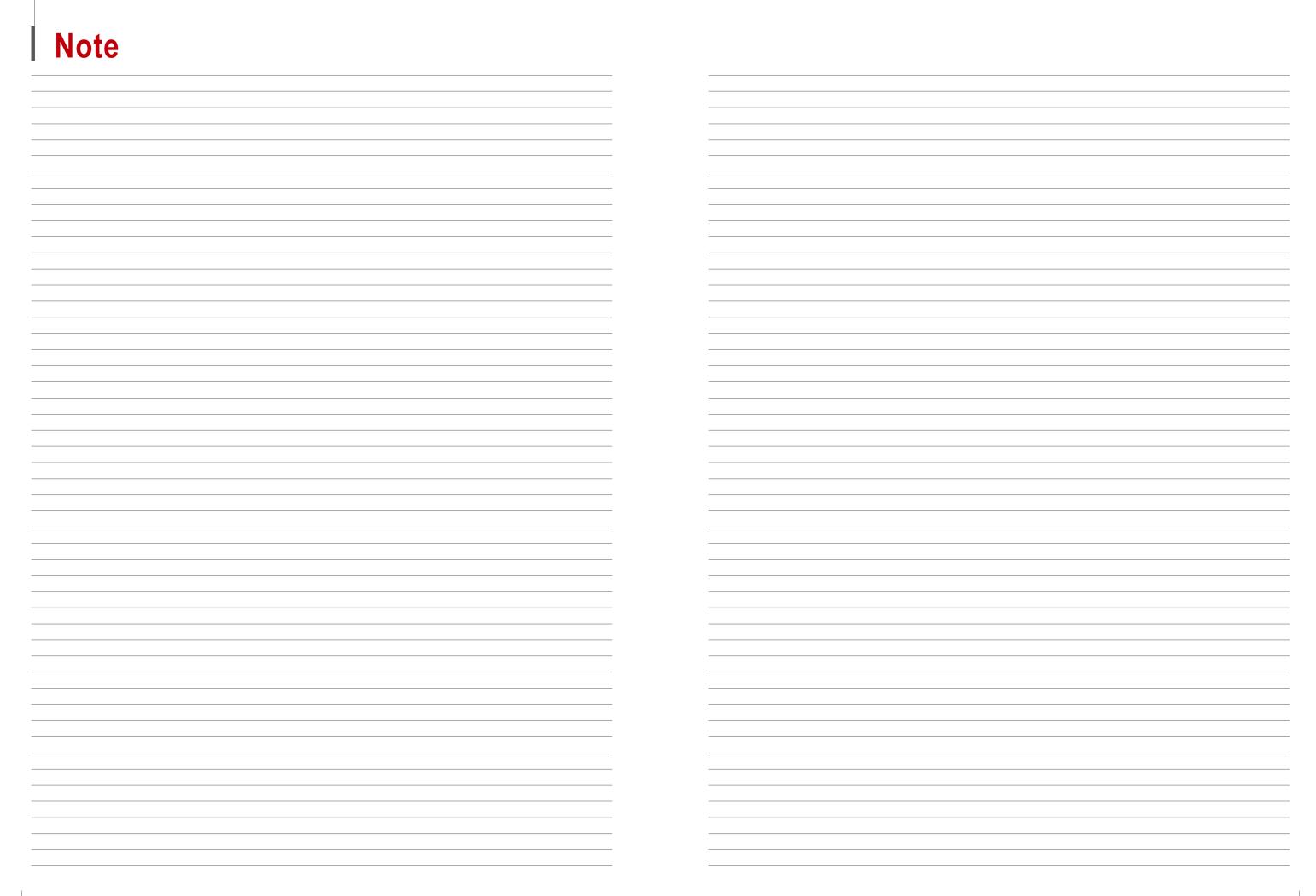
Vietnam IMV TECHNO VIETNAM COMPANY LIMITED


Germany IMV EUROPE LIMITED
German sales Office

France IMV France

System Layout

Instllation Example


^{*}Room layout can be changed to suit the customer's needs.

Service area Instillation Exmaple

China IMV CORPORATION

Office

Shanghai Representative

